Nalecz Institute of Biocybernetics and Biomedical Engineering, PAS, Trojdena 4, 02-109 Warsaw, Poland.
Comput Methods Programs Biomed. 2012 Dec;108(3):1097-105. doi: 10.1016/j.cmpb.2012.07.007. Epub 2012 Sep 15.
Event-related potentials (ERP) recorded by electroencephalography (EEG) are brain responses following an external stimulus, e.g., a sound or an image. They are used in fundamental cognitive research and neurological and psychiatric clinical research. ERPs are weaker than spontaneous brain activity and therefore it is difficult or even impossible to identify an ERP in the brain activity following an individual stimulus. For this reason, a blind source separation method relying on statistical information is proposed for the isolation of ERP after auditory stimulation. In this paper it is suggested to integrate epoch concatenation into the popular temporal decorrelation algorithm SOBI/TDSEP relying on time shifted correlations. With the proposed epoch concatenation temporal decorrelation (ecTD) algorithm a component representing the auditory evoked potential (AEP) is found in electroencephalographic data from an auditory stimulation experiment lasting 3min. The ecTD result is compared with the averaged AEP and it is superior to the result from the SOBI/TDSEP algorithm. Furthermore the ecTD processing leads to significant increases in the signal-to-noise ratio (shape SNR) of the AEP and reduces the computation time by 50% if compared to the SOBI/TDSEP calculation. It can be concluded that data concatenation in combination with temporal decorrelation is useful for isolating and improving the properties of an AEP especially in a short duration stimulation experiment.
事件相关电位(ERP)是脑电图(EEG)记录的大脑对外部刺激(例如声音或图像)的反应。它们被用于基础认知研究以及神经和精神临床研究。ERP 比自发脑活动弱,因此很难甚至不可能在单个刺激后的脑活动中识别出 ERP。出于这个原因,提出了一种依赖于统计信息的盲源分离方法,用于分离听觉刺激后的 ERP。本文建议将时相关联集成到基于时间偏移相关的流行时间去相关算法 SOBI/TDSEP 中。使用所提出的时相关联时间去相关(ecTD)算法,在持续 3 分钟的听觉刺激实验的脑电图数据中找到了代表听觉诱发电位(AEP)的分量。将 ecTD 结果与平均 AEP 进行比较,结果优于 SOBI/TDSEP 算法。此外,与 SOBI/TDSEP 计算相比,ecTD 处理会导致 AEP 的信噪比(形状 SNR)显著提高,并将计算时间减少 50%。可以得出结论,数据关联与时间去相关相结合对于隔离和改善 AEP 的特性非常有用,尤其是在短持续时间刺激实验中。