Suppr超能文献

轻度认知障碍和早期阿尔茨海默病头皮脑电图特征的频谱与复杂性分析

Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer's disease.

作者信息

McBride Joseph C, Zhao Xiaopeng, Munro Nancy B, Smith Charles D, Jicha Gregory A, Hively Lee, Broster Lucas S, Schmitt Frederick A, Kryscio Richard J, Jiang Yang

机构信息

Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States.

Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN 37996, United States; National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Knoxville, TN 37996, United States.

出版信息

Comput Methods Programs Biomed. 2014 Apr;114(2):153-63. doi: 10.1016/j.cmpb.2014.01.019. Epub 2014 Feb 8.

Abstract

Amnestic mild cognitive impairment (aMCI) often is an early stage of Alzheimer's disease (AD). MCI is characterized by cognitive decline departing from normal cognitive aging but that does not significantly interfere with daily activities. This study explores the potential of scalp EEG for early detection of alterations from cognitively normal status of older adults signifying MCI and AD. Resting 32-channel EEG records from 48 age-matched participants (mean age 75.7 years)-15 normal controls (NC), 16 early MCI, and 17 early stage AD-are examined. Regional spectral and complexity features are computed and used in a support vector machine model to discriminate between groups. Analyses based on three-way classifications demonstrate overall discrimination accuracies of 83.3%, 85.4%, and 79.2% for resting eyes open, counting eyes closed, and resting eyes closed protocols, respectively. These results demonstrate the great promise for scalp EEG spectral and complexity features as noninvasive biomarkers for detection of MCI and early AD.

摘要

遗忘型轻度认知障碍(aMCI)通常是阿尔茨海默病(AD)的早期阶段。MCI的特征是认知能力下降,不同于正常的认知衰老,但不会显著干扰日常活动。本研究探讨头皮脑电图在早期检测老年人从认知正常状态转变为MCI和AD的潜在作用。对48名年龄匹配的参与者(平均年龄75.7岁)——15名正常对照(NC)、16名早期MCI患者和17名早期AD患者——的静息32通道脑电图记录进行了检查。计算区域频谱和复杂性特征,并将其用于支持向量机模型以区分不同组。基于三向分类的分析表明,对于静息睁眼、闭眼计数和静息闭眼方案,总体判别准确率分别为83.3%、85.4%和79.2%。这些结果表明,头皮脑电图频谱和复杂性特征作为检测MCI和早期AD的非侵入性生物标志物具有巨大潜力。

相似文献

引用本文的文献

7
Neural biomarkers of age-related memory change.与年龄相关的记忆变化的神经生物标志物。
Psychol Aging. 2025 May;40(3):265-277. doi: 10.1037/pag0000876. Epub 2025 Feb 6.

本文引用的文献

9
CSF Biomarkers for Alzheimer's Disease Diagnosis.用于阿尔茨海默病诊断的脑脊液生物标志物
Int J Alzheimers Dis. 2010 Jun 23;2010:606802. doi: 10.4061/2010/606802.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验