Department of Biological Sciences, Laboratory for Molecular Biology (M/C 567), University of Illinois at Chicago, Molecular Biology Research Building, Chicago, IL 60607, USA.
J Mol Biol. 2012 Nov 23;424(1-2):88-103. doi: 10.1016/j.jmb.2012.09.006. Epub 2012 Sep 15.
While affinity reagents are valuable tools for monitoring protein phosphorylation and studying signaling events in cells, generating them through immunization of animals with phosphopeptides is expensive, laborious, and time-consuming. An attractive alternative is to use protein evolution techniques and isolate new anti-phosphopeptide binding specificities from a library of variants of a phosphopeptide-binding domain. To explore this strategy, we attempted to display on the surface of bacteriophage M13 the N-terminal Forkhead-associated (FHA1) domain of yeast Rad53p, which is a naturally occurring phosphothreonine (pT)-binding domain, and found it to be nonfunctional due to misfolding in the bacterial periplasm. To overcome this limitation, we constructed a library of FHA1 variants by mutagenic PCR and isolated functional variants after three rounds of affinity selection with its pT peptide ligand. A hydrophobic residue at position 34 in the β1 strand was discovered to be essential for phage display of a functional FHA1 domain. Additionally, by heating the phage library to 50°C prior to affinity selection with its cognate pT peptide, we identified a variant (G2) that was 8°C more thermally stable than the wild-type domain. Using G2 as a scaffold, we constructed phage-displayed libraries of FHA1 variants and affinity selected for variants that bound selectively to five pT peptides. These reagents are renewable and have high protein yields (20-25mg/L), when expressed in Escherichia coli. Thus, we have changed the specificity of the FHA1 domain and demonstrated that engineering phosphopeptide-binding domains is an attractive avenue for generating new anti-phosphopeptide binding specificities in vitro by phage display.
虽然亲和试剂是监测蛋白质磷酸化和研究细胞信号事件的有价值的工具,但通过用磷酸肽免疫动物来产生它们既昂贵、费力又耗时。一种有吸引力的替代方法是使用蛋白质进化技术,从磷酸肽结合域的变体文库中分离新的抗磷酸肽结合特异性。为了探索这一策略,我们试图在噬菌体 M13 的表面展示酵母 Rad53p 的 N 端 Forkhead-associated(FHA1)结构域,该结构域是一种天然存在的磷酸苏氨酸(pT)结合结构域,但由于在细菌周质中的错误折叠而无法发挥功能。为了克服这一限制,我们通过诱变 PCR 构建了 FHA1 变体文库,并在与 pT 肽配体进行三轮亲和选择后分离出功能变体。在 β1 链的第 34 位发现一个疏水性残基对于 FHA1 结构域的噬菌体展示是必不可少的。此外,通过在与同源 pT 肽进行亲和选择之前将噬菌体文库加热至 50°C,我们鉴定出一个变体(G2)比野生型结构域的热稳定性高约 8°C。我们使用 G2 作为支架,构建了 FHA1 变体的噬菌体展示文库,并进行亲和选择,以获得选择性结合五种 pT 肽的变体。当在大肠杆菌中表达时,这些试剂是可再生的,并且具有高的蛋白质产量(约 20-25mg/L)。因此,我们改变了 FHA1 结构域的特异性,并证明通过噬菌体展示工程化磷酸肽结合结构域是体外产生新的抗磷酸肽结合特异性的一种有吸引力的途径。