Suppr超能文献

一种用于基因功能分析的高效 RNA 干扰筛选策略。

An efficient RNA interference screening strategy for gene functional analysis.

机构信息

Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan.

出版信息

BMC Genomics. 2012 Sep 18;13:491. doi: 10.1186/1471-2164-13-491.

Abstract

BACKGROUND

RNA interference (RNAi) is commonly applied in genome-scale gene functional screens. However, a one-on-one RNAi analysis that targets each gene is cost-ineffective and laborious. Previous studies have indicated that siRNAs can also affect RNAs that are near-perfectly complementary, and this phenomenon has been termed an off-target effect. This phenomenon implies that it is possible to silence several genes simultaneously with a carefully designed siRNA.

RESULTS

We propose a strategy that is combined with a heuristic algorithm to design suitable siRNAs that can target multiple genes and a group testing method that would reduce the number of required RNAi experiments in a large-scale RNAi analysis. To verify the efficacy of our strategy, we used the Orchid expressed sequence tag data as a case study to screen the putative transcription factors that are involved in plant disease responses. According to our computation, 94 qualified siRNAs were sufficient to examine all of the predicated 229 transcription factors. In addition, among the 94 computer-designed siRNAs, an siRNA that targets both TF15 (a previously identified transcription factor that is involved in the plant disease-response pathway) and TF21 was introduced into orchids. The experimental results showed that this siRNA can simultaneously silence TF15 and TF21, and application of our strategy successfully confirmed that TF15 is involved in plant defense responses. Interestingly, our second-round analysis, which used an siRNA specific to TF21, indicated that TF21 is a previously unidentified transcription factor that is related to plant defense responses.

CONCLUSIONS

Our computational results showed that it is possible to screen all genes with fewer experiments than would be required for the traditional one-on-one RNAi screening. We also verified that our strategy is capable of identifying genes that are involved in a specific phenotype.

摘要

背景

RNA 干扰(RNAi)常用于全基因组规模的基因功能筛选。然而,针对每个基因的一对一 RNAi 分析既昂贵又费力。先前的研究表明,siRNA 也可以影响与其近乎完全互补的 RNA,这种现象被称为脱靶效应。这种现象意味着可以用精心设计的 siRNA 同时沉默几个基因。

结果

我们提出了一种策略,该策略结合启发式算法设计合适的 siRNA,可以靶向多个基因,以及一种群体测试方法,可以减少大规模 RNAi 分析中所需的 RNAi 实验数量。为了验证我们策略的有效性,我们使用兰花表达序列标签数据作为案例研究,筛选参与植物疾病反应的假定转录因子。根据我们的计算,94 个合格的 siRNA 足以检查所有预测的 229 个转录因子。此外,在 94 个计算机设计的 siRNA 中,引入了一个针对 TF15(先前鉴定的参与植物疾病反应途径的转录因子)和 TF21 的 siRNA。实验结果表明,该 siRNA 可以同时沉默 TF15 和 TF21,并且我们的策略成功地证实了 TF15 参与植物防御反应。有趣的是,我们使用针对 TF21 的特异性 siRNA 进行的第二轮分析表明,TF21 是一个先前未被识别的与植物防御反应相关的转录因子。

结论

我们的计算结果表明,使用较少的实验就可以筛选出所有的基因,而不需要进行传统的一对一 RNAi 筛选。我们还验证了我们的策略能够识别参与特定表型的基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f079/3533828/5b8cc832458e/1471-2164-13-491-1.jpg

相似文献

1
An efficient RNA interference screening strategy for gene functional analysis.
BMC Genomics. 2012 Sep 18;13:491. doi: 10.1186/1471-2164-13-491.
2
A computational model for compressed sensing RNAi cellular screening.
BMC Bioinformatics. 2012 Dec 27;13:337. doi: 10.1186/1471-2105-13-337.
3
Targeting fungal genes by diced siRNAs: a rapid tool to decipher gene function in Aspergillus nidulans.
PLoS One. 2013 Oct 10;8(10):e75443. doi: 10.1371/journal.pone.0075443. eCollection 2013.
5
An siRNA designing tool with a unique functional off-target filtering approach.
J Biomol Struct Dyn. 2013;31(11):1343-57. doi: 10.1080/07391102.2012.736758. Epub 2012 Nov 12.
7
Selection of hyperfunctional siRNAs with improved potency and specificity.
Nucleic Acids Res. 2009 Dec;37(22):e152. doi: 10.1093/nar/gkp864.
9
Viral small interfering RNAs target host genes to mediate disease symptoms in plants.
PLoS Pathog. 2011 May;7(5):e1002022. doi: 10.1371/journal.ppat.1002022. Epub 2011 May 5.
10
Efficient prediction of siRNAs with siRNArules 1.0: an open-source JAVA approach to siRNA algorithms.
RNA. 2006 Sep;12(9):1620-5. doi: 10.1261/rna.81006. Epub 2006 Jul 26.

本文引用的文献

2
OrchidBase: a collection of sequences of the transcriptome derived from orchids.
Plant Cell Physiol. 2011 Feb;52(2):238-43. doi: 10.1093/pcp/pcq201. Epub 2011 Jan 17.
3
Shotguns and SNPs: how fast and cheap sequencing is revolutionizing plant biology.
Plant J. 2010 Mar;61(6):922-7. doi: 10.1111/j.1365-313X.2009.04030.x.
4
Evolutionary persistence of functional compensation by duplicate genes in Arabidopsis.
Genome Biol Evol. 2009 Oct 29;1:409-14. doi: 10.1093/gbe/evp043.
5
Sequencing technologies - the next generation.
Nat Rev Genet. 2010 Jan;11(1):31-46. doi: 10.1038/nrg2626. Epub 2009 Dec 8.
6
The B73 maize genome: complexity, diversity, and dynamics.
Science. 2009 Nov 20;326(5956):1112-5. doi: 10.1126/science.1178534.
7
De novo sequencing of plant genomes using second-generation technologies.
Brief Bioinform. 2009 Nov;10(6):609-18. doi: 10.1093/bib/bbp039.
8
Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana.
RNA. 2008 May;14(5):836-43. doi: 10.1261/rna.895308. Epub 2008 Mar 20.
9
Gene silencing in plants using artificial microRNAs and other small RNAs.
Plant J. 2008 Feb;53(4):674-90. doi: 10.1111/j.1365-313X.2007.03328.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验