Basic and Applied Research on Jute Project, Bangladesh Jute Research Institute, Manik Mia Avenue, Dhaka 1207, Bangladesh.
BMC Genomics. 2012 Sep 19;13:493. doi: 10.1186/1471-2164-13-493.
Macrophomina phaseolina is one of the most destructive necrotrophic fungal pathogens that infect more than 500 plant species throughout the world. It can grow rapidly in infected plants and subsequently produces a large amount of sclerotia that plugs the vessels, resulting in wilting of the plant.
We sequenced and assembled ~49 Mb into 15 super-scaffolds covering 92.83% of the M. phaseolina genome. We predict 14,249 open reading frames (ORFs) of which 9,934 are validated by the transcriptome. This phytopathogen has an abundance of secreted oxidases, peroxidases, and hydrolytic enzymes for degrading cell wall polysaccharides and lignocelluloses to penetrate into the host tissue. To overcome the host plant defense response, M. phaseolina encodes a significant number of P450s, MFS type membrane transporters, glycosidases, transposases, and secondary metabolites in comparison to all sequenced ascomycete species. A strikingly distinct set of carbohydrate esterases (CE) are present in M. phaseolina, with the CE9 and CE10 families remarkably higher than any other fungi. The phenotypic microarray data indicates that M. phaseolina can adapt to a wide range of osmotic and pH environments. As a broad host range pathogen, M. phaseolina possesses a large number of pathogen-host interaction genes including those for adhesion, signal transduction, cell wall breakdown, purine biosynthesis, and potent mycotoxin patulin.
The M. phaseolina genome provides a framework of the infection process at the cytological and molecular level which uses a diverse arsenal of enzymatic and toxin tools to destroy the host plants. Further understanding of the M. phaseolina genome-based plant-pathogen interactions will be instrumental in designing rational strategies for disease control, essential to ensuring global agricultural crop production and security.
旋孢腔菌是一种极具破坏性的坏死型真菌病原体,能够感染全球 500 多种植物。它可以在感染的植物中迅速生长,并随后产生大量的菌核,堵塞导管,导致植物萎蔫。
我们对 ~49Mb 的序列进行了测序和组装,形成了 15 个超级支架,覆盖了旋孢腔菌基因组的 92.83%。我们预测了 14249 个开放阅读框(ORFs),其中 9934 个被转录组验证。这种植物病原体拥有丰富的分泌氧化酶、过氧化物酶和水解酶,用于降解细胞壁多糖和木质纤维素,以穿透宿主组织。为了克服宿主植物的防御反应,旋孢腔菌编码了大量的 P450s、MFS 型膜转运蛋白、糖苷酶、转座酶和次生代谢物,与所有已测序的子囊菌物种相比。旋孢腔菌中存在一组显著不同的碳水化合物酯酶(CE),其中 CE9 和 CE10 家族显著高于任何其他真菌。表型微阵列数据表明,旋孢腔菌可以适应广泛的渗透压和 pH 环境。作为一种广泛宿主范围的病原体,旋孢腔菌拥有大量的病原体-宿主相互作用基因,包括粘附、信号转导、细胞壁降解、嘌呤生物合成和强效真菌毒素棒曲霉素。
旋孢腔菌基因组为细胞水平和分子水平的感染过程提供了一个框架,它利用多样化的酶和毒素工具来破坏宿主植物。进一步了解旋孢腔菌基因组的植物-病原体相互作用将有助于设计合理的疾病控制策略,这对于确保全球农业作物生产和安全至关重要。