Suppr超能文献

水生生态系统和纯培养物中微生物氮同化的钼限制

Molybdenum limitation of microbial nitrogen assimilation in aquatic ecosystems and pure cultures.

作者信息

Glass Jennifer B, Axler Richard P, Chandra Sudeep, Goldman Charles R

机构信息

School of Earth and Space Exploration, Arizona State University Arizona, AZ, USA.

出版信息

Front Microbiol. 2012 Sep 13;3:331. doi: 10.3389/fmicb.2012.00331. eCollection 2012.

Abstract

Molybdenum (Mo) is an essential micronutrient for biological assimilation of nitrogen gas and nitrate because it is present in the cofactors of nitrogenase and nitrate reductase enzymes. Although Mo is the most abundant transition metal in seawater (107 nM), it is present in low concentrations in most freshwaters, typically <20 nM. In 1960, it was discovered that primary productivity was limited by Mo scarcity (2-4 nM) in Castle Lake, a small, meso-oligotrophic lake in northern California. Follow up studies demonstrated that Mo also limited primary productivity in lakes in New Zealand, Alaska, and the Sierra Nevada. Research in the 1970s and 1980s showed that Mo limited primary productivity and nitrate uptake in Castle Lake only during periods of the growing season when nitrate concentrations were relatively high because ammonium assimilation does not require Mo. In the years since, research has shifted to investigate whether Mo limitation also occurs in marine and soil environments. Here we review studies of Mo limitation of nitrogen assimilation in natural microbial communities and pure cultures. We also summarize new data showing that the simultaneous addition of Mo and nitrate causes increased activity of proteins involved in nitrogen assimilation in the hypolimnion of Castle Lake when ammonium is scarce. Furthermore, we suggest that meter-scale Mo and oxygen depth profiles from Castle Lake are consistent with the hypothesis that nitrogen-fixing cyanobacteria in freshwater periphyton communities have higher Mo requirements than other microbial communities. Finally, we present topics for future research related to Mo bioavailability through time and with changing oxidation state.

摘要

钼(Mo)是生物同化氮气和硝酸盐所必需的微量营养素,因为它存在于固氮酶和硝酸还原酶的辅因子中。尽管钼是海水中含量最丰富的过渡金属(107 nM),但在大多数淡水中其浓度较低,通常<20 nM。1960年,人们发现加利福尼亚州北部一个小型中寡营养湖泊卡斯尔湖中的初级生产力受到钼缺乏(2 - 4 nM)的限制。后续研究表明,钼也限制了新西兰、阿拉斯加和内华达山脉湖泊中的初级生产力。20世纪70年代和80年代的研究表明,钼仅在生长季节中硝酸盐浓度相对较高时才会限制卡斯尔湖的初级生产力和硝酸盐吸收,因为铵同化不需要钼。从那以后,研究方向转向调查钼限制是否也发生在海洋和土壤环境中。在此,我们综述了关于自然微生物群落和纯培养物中钼对氮同化限制的研究。我们还总结了新的数据,这些数据表明,当铵缺乏时,同时添加钼和硝酸盐会导致卡斯尔湖下层水中参与氮同化的蛋白质活性增加。此外,我们认为卡斯尔湖米级的钼和氧气深度剖面与淡水附生植物群落中固氮蓝藻比其他微生物群落对钼有更高需求这一假设相一致。最后,我们提出了与钼随时间和氧化态变化的生物可利用性相关的未来研究主题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f44/3440940/58a41c65590a/fmicb-03-00331-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验