Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland, USA.
Geobiology. 2011 Jan;9(1):94-106. doi: 10.1111/j.1472-4669.2010.00262.x. Epub 2010 Nov 24.
We measured the δ⁹⁸Mo of cells and media from molybdenum (Mo) assimilation experiments with the freshwater cyanobacterium Anabaena variabilis, grown with nitrate as a nitrogen (N) source or fixing atmospheric N₂. This organism uses a Mo-based nitrate reductase during nitrate utilization and a Mo-based dinitrogenase during N₂ fixation under culture conditions here. We also demonstrate that it has a high-affinity Mo uptake system (ModABC) similar to other cyanobacteria, including marine N₂-fixing strains. Anabaena variabilis preferentially assimilated light isotopes of Mo in all experiments, resulting in fractionations of -0.2‰ to -1.0‰ ± 0.2‰ between cells and media (ε(cells-media)), extending the range of biological Mo fractionations previously reported. The fractionations were internally consistent within experiments, but varied with the N source utilized and for different growth phases sampled. During growth on nitrate, A. variabilis consistently produced fractionations of -0.3 ± 0.1‰ (mean ± standard deviation between experiments). When fixing N₂, A. variabilis produced fractionations of -0.9 ± 0.1‰ during exponential growth, and -0.5 ± 0.1‰ during stationary phase. This pattern is inconsistent with a simple kinetic isotope effect associated with Mo transport, because Mo is likely transported through the ModABC uptake system under all conditions studied. We present a reaction network model for Mo isotope fractionation that demonstrates how Mo transport and storage, coordination changes during enzymatic incorporation, and the distribution of Mo inside the cell could all contribute to the total biological fractionations. Additionally, we discuss the potential importance of biologically incorporated Mo to organic matter-bound Mo in marine sediments.
我们测量了淡水蓝藻鱼腥藻在硝酸盐作为氮(N)源或固定大气 N₂时同化 Mo 的实验中细胞和培养基的 δ⁹⁸Mo。在培养条件下,该生物体在利用硝酸盐时使用基于 Mo 的硝酸盐还原酶,在固定 N₂时使用基于 Mo 的二氮酶。我们还证明,它具有类似于其他蓝藻的高亲和力 Mo 摄取系统(ModABC),包括海洋固氮菌株。鱼腥藻在所有实验中都优先同化 Mo 的轻同位素,导致细胞和培养基之间的分馏为 -0.2‰ 至 -1.0‰ ± 0.2‰(ε(细胞-培养基)),扩展了先前报道的生物 Mo 分馏的范围。分馏在实验内是一致的,但随所用 N 源和不同的生长阶段而变化。在硝酸盐上生长时,鱼腥藻始终产生 -0.3 ± 0.1‰ 的分馏(实验之间的平均值 ± 标准偏差)。当固定 N₂时,鱼腥藻在指数生长期产生 -0.9 ± 0.1‰ 的分馏,在静止期产生 -0.5 ± 0.1‰ 的分馏。这种模式与与 Mo 运输相关的简单动力学同位素效应不一致,因为在所有研究条件下,Mo 可能通过 ModABC 摄取系统运输。我们提出了一个 Mo 同位素分馏的反应网络模型,该模型展示了 Mo 运输和储存、酶结合过程中的配位变化以及 Mo 在细胞内的分布如何共同导致总生物学分馏。此外,我们还讨论了生物结合的 Mo 对海洋沉积物中有机物质结合的 Mo 的潜在重要性。