Suppr超能文献

蓝细菌和藻类中金属可利用性与氮同化的协同进化。

Coevolution of metal availability and nitrogen assimilation in cyanobacteria and algae.

作者信息

Glass J B, Wolfe-Simon F, Anbar A D

机构信息

School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA.

出版信息

Geobiology. 2009 Mar;7(2):100-23. doi: 10.1111/j.1472-4669.2009.00190.x.

Abstract

Marine primary producers adapted over eons to the changing chemistry of the oceans. Because a number of metalloenzymes are necessary for N assimilation, changes in the availability of transition metals posed a particular challenge to the supply of this critical nutrient that regulates marine biomass and productivity. Integrating recently developed geochemical, biochemical, and genetic evidence, we infer that the use of metals in N assimilation - particularly Fe and Mo - can be understood in terms of the history of metal availability through time. Anoxic, Fe-rich Archean oceans were conducive to the evolution of Fe-using enzymes that assimilate abiogenic NH(4)(+) and NO(2)(-). The N demands of an expanding biosphere were satisfied by the evolution of biological N(2) fixation, possibly utilizing only Fe. Trace O(2) in late Archean environments, and the eventual 'Great Oxidation Event' c. 2.3 Ga, mobilized metals such as Mo, enabling the evolution of Mo (or V)-based N(2) fixation and the Mo-dependent enzymes for NO(3)(-) assimilation and denitrification by prokaryotes. However, the subsequent onset of deep-sea euxinia, an increasingly-accepted idea, may have kept ocean Mo inventories low and depressed Fe, limiting the rate of N(2) fixation and the supply of fixed N. Eukaryotic ecosystems may have been particularly disadvantaged by N scarcity and the high Mo requirement of eukaryotic NO(3)(-) assimilation. Thorough ocean oxygenation in the Neoproterozoic led to Mo-rich oceans, possibly contributing to the proliferation of eukaryotes and thus the Cambrian explosion of metazoan life. These ideas can be tested by more intensive study of the metal requirements in N assimilation and the biological strategies for metal uptake, regulation, and storage.

摘要

海洋初级生产者历经漫长岁月适应了海洋化学性质的变化。由于氮同化需要多种金属酶,过渡金属可利用性的变化对这种调节海洋生物量和生产力的关键营养素的供应构成了特殊挑战。综合最近发展的地球化学、生物化学和遗传学证据,我们推断,氮同化过程中金属的使用——尤其是铁和钼——可以从金属随时间的可利用历史角度来理解。缺氧、富含铁的太古宙海洋有利于利用铁的酶的进化,这些酶可同化非生物来源的铵离子(NH₄⁺)和亚硝酸根离子(NO₂⁻)。不断扩大的生物圈对氮的需求通过生物固氮的进化得到满足,可能仅利用铁。太古宙晚期环境中的微量氧气以及最终约23亿年前的“大氧化事件”,使钼等金属得以活化,从而促成了基于钼(或钒)的固氮作用的进化以及原核生物用于硝酸根离子(NO₃⁻)同化和反硝化作用的依赖钼的酶的进化。然而,深海 euxinia(一种越来越被认可的观点)的随后出现,可能使海洋钼储量保持在低水平并抑制了铁,限制了固氮速率和固定氮的供应。真核生态系统可能尤其因氮稀缺以及真核生物硝酸根离子同化对钼的高需求而处于不利地位。新元古代海洋的彻底氧化导致海洋富含钼,这可能促进了真核生物的增殖,进而促成了后生动物生命的寒武纪大爆发。这些观点可以通过对氮同化中金属需求以及金属摄取、调节和储存的生物学策略进行更深入的研究来检验。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验