Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA.
Mol Ecol. 2012 Oct;21(20):4942-57. doi: 10.1111/mec.12006. Epub 2012 Sep 21.
Evolution in allopatric populations can lead to incompatibilities that result in reduced hybrid fitness and ultimately reproductive isolation upon secondary contact. The Dobzhansky-Muller (DM) model nicely accounts for the evolution of such incompatibilities. Although DM incompatibilities were originally conceived as resulting of interactions between nuclear genes, recent studies have documented cases where incompatibilities have arisen between nuclear and mitochondrial genomes (mtDNA). Although mtDNA comprises only a tiny component (typically <<0.01%) of an organism's genetic material, several features of mtDNA may lead to a disproportionate contribution to the evolution of hybrid incompatibilities: (i) essentially all functions of mtDNA require interaction with nuclear gene products. All mtDNA-encoded proteins are components of the oxidative phosphorylation (OXPHOS) system and all mtDNA-encoded RNAs are part of the mitochondrial protein synthetic machinery; both processes require interaction with nuclear-encoded proteins for function. (ii) Transcription and replication of mtDNA also involve mitonuclear interactions as nuclear-encoded proteins must bind to regulatory motifs in the mtDNA to initiate these processes. (iii) Although features of mtDNA vary amongst taxa, metazoan mtDNA is typically characterized by high nucleotide substitution rates, lack of recombination and reduced effective population sizes that collectively lead to increased chance fixation of mildly deleterious mutations. Combined, these features create an evolutionary dynamic where rapid mtDNA evolution favours compensatory nuclear gene evolution, ultimately leading to co-adaptation of mitochondrial and nuclear genomes. When previously isolated lineages hybridize in nature or in the lab, intergenomic co-adaptation is disrupted and hybrid breakdown is observed; the role of intergenomic co-adaptation in hybrid breakdown and speciation will generally be most pronounced when rates of mtDNA evolution are high or when restricted gene flow results in significant population differentiation.
在异域种群中的进化可能导致不兼容,从而降低杂种的适合度,并在二次接触时最终导致生殖隔离。多布赞斯基-穆勒(DM)模型很好地解释了这种不兼容的进化。尽管 DM 不兼容性最初被认为是由于核基因之间的相互作用而产生的,但最近的研究已经记录了核基因和线粒体基因组(mtDNA)之间不兼容的情况。尽管 mtDNA 仅占生物体遗传物质的一小部分(通常 <<0.01%),但 mtDNA 的几个特征可能会导致对杂种不兼容性进化的不成比例的贡献:(i)mtDNA 的所有功能实际上都需要与核基因产物相互作用。所有 mtDNA 编码的蛋白质都是氧化磷酸化(OXPHOS)系统的组成部分,所有 mtDNA 编码的 RNA 都是线粒体蛋白合成机制的一部分;这两个过程都需要与核编码蛋白相互作用才能发挥功能。(ii)mtDNA 的转录和复制也涉及线粒体与核的相互作用,因为核编码蛋白必须结合到 mtDNA 中的调节基序才能启动这些过程。(iii)尽管 mtDNA 的特征在不同的分类群中有所不同,但后生动物的 mtDNA通常具有高核苷酸替换率、缺乏重组和降低的有效种群大小的特征,这些特征共同导致轻度有害突变的固定机会增加。综合起来,这些特征创造了一个进化动态,即 mtDNA 的快速进化有利于补偿性核基因的进化,最终导致线粒体和核基因组的共同适应。当以前隔离的谱系在自然界或实验室中杂交时,种间的共同适应就会被打破,并且会观察到杂种的崩溃;当 mtDNA 进化率高或基因流受到限制导致种群分化显著时,种间的共同适应在杂种崩溃和物种形成中的作用通常最为明显。