Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Health Sciences Center, Morgantown, 26506-9177, USA.
Annu Rev Microbiol. 2012;66:349-70. doi: 10.1146/annurev-micro-092611-150145.
Spirochete motility is enigmatic: It differs from the motility of most other bacteria in that the entire bacterium is involved in translocation in the absence of external appendages. Using the Lyme disease spirochete Borrelia burgdorferi (Bb) as a model system, we explore the current research on spirochete motility and chemotaxis. Bb has periplasmic flagella (PFs) subterminally attached to each end of the protoplasmic cell cylinder, and surrounding the cell is an outer membrane. These internal helix-shaped PFs allow the spirochete to swim by generating backward-moving waves by rotation. Exciting advances using cryoelectron tomography are presented with respect to in situ analysis of cell, PF, and motor structure. In addition, advances in the dynamics of motility, chemotaxis, gene regulation, and the role of motility and chemotaxis in the life cycle of Bb are summarized. The results indicate that the motility paradigms of flagellated bacteria do not apply to these unique bacteria.
它不同于大多数其他细菌的运动方式,因为在没有外部附属物的情况下,整个细菌都参与了易位。我们以莱姆病螺旋体伯氏疏螺旋体(Bb)为模型系统,探索螺旋体运动和趋化性的当前研究。Bb 在细胞质细胞圆柱的每一端都有周质鞭毛(PFs)亚末端附着,并且细胞周围是一个外膜。这些内部螺旋形的 PF 允许螺旋体通过旋转产生向后移动的波来游动。使用低温电子断层扫描术进行了激动人心的进展,涉及细胞、PF 和马达结构的原位分析。此外,还总结了运动、趋化性、基因调控的动力学以及运动和趋化性在 Bb 生命周期中的作用方面的进展。结果表明,鞭毛细菌的运动模式不适用于这些独特的细菌。