Sandau Ursula S, Colino-Oliveira Mariana, Jones Abbie, Saleumvong Bounmy, Coffman Shayla Q, Liu Long, Miranda-Lourenço Catarina, Palminha Cátia, Batalha Vânia L, Xu Yiming, Huo Yuqing, Diógenes Maria J, Sebastião Ana M, Boison Detlev
R.S. Dow Neurobiology Laboratories and.
Institute of Pharmacology and Neurosciences, Faculty of Medicine, Unit of Neurosciences, and.
J Neurosci. 2016 Nov 30;36(48):12117-12128. doi: 10.1523/JNEUROSCI.2146-16.2016.
Adenosine kinase (ADK) deficiency in human patients (OMIM:614300) disrupts the methionine cycle and triggers hypermethioninemia, hepatic encephalopathy, cognitive impairment, and seizures. To identify whether this neurological phenotype is intrinsically based on ADK deficiency in the brain or if it is secondary to liver dysfunction, we generated a mouse model with a brain-wide deletion of ADK by introducing a Nestin-Cre transgene into a line of conditional ADK deficient Adk mice. These Adk mice developed a progressive stress-induced seizure phenotype associated with spontaneous convulsive seizures and profound deficits in hippocampus-dependent learning and memory. Pharmacological, biochemical, and electrophysiological studies suggest enhanced adenosine levels around synapses resulting in an enhanced adenosine A receptor (AR)-dependent protective tone despite lower expression levels of the receptor. Theta-burst-induced LTP was enhanced in the mutants and this was dependent on adenosine A receptor (AR) and tropomyosin-related kinase B signaling, suggesting increased activation of these receptors in synaptic plasticity phenomena. Accordingly, reducing adenosine A receptor activity in Adk mice restored normal associative learning and contextual memory and attenuated seizure risk. We conclude that ADK deficiency in the brain triggers neuronal adaptation processes that lead to dysregulated synaptic plasticity, cognitive deficits, and increased seizure risk. Therefore, ADK mutations have an intrinsic effect on brain physiology and may present a genetic risk factor for the development of seizures and learning impairments. Furthermore, our data show that blocking AR activity therapeutically can attenuate neurological symptoms in ADK deficiency.
A novel human genetic condition (OMIM #614300) that is based on mutations in the adenosine kinase (Adk) gene has been discovered recently. Affected patients develop hepatic encephalopathy, seizures, and severe cognitive impairment. To model and understand the neurological phenotype of the human mutation, we generated a new conditional knock-out mouse with a brain-specific deletion of Adk (Adk). Similar to ADK-deficient patients, Adk mice develop seizures and cognitive deficits. We identified increased basal synaptic transmission and enhanced adenosine A receptor (AR)-dependent synaptic plasticity as the underlying mechanisms that govern these phenotypes. Our data show that neurological phenotypes in ADK-deficient patients are intrinsic to ADK deficiency in the brain and that blocking AR activity therapeutically can attenuate neurological symptoms in ADK deficiency.
人类患者中的腺苷激酶(ADK)缺乏症(OMIM:614300)会破坏蛋氨酸循环,并引发高蛋氨酸血症、肝性脑病、认知障碍和癫痫发作。为了确定这种神经学表型是内在地基于大脑中的ADK缺乏,还是继发于肝功能障碍,我们通过将Nestin-Cre转基因引入条件性ADK缺陷型Adk小鼠品系,生成了一种全脑缺失ADK的小鼠模型。这些Adk小鼠出现了一种渐进性应激诱导的癫痫发作表型,伴有自发性惊厥发作以及海马依赖性学习和记忆的严重缺陷。药理学、生物化学和电生理学研究表明,尽管受体表达水平较低,但突触周围的腺苷水平升高,导致腺苷A受体(AR)依赖性保护作用增强。在突变体中,theta波爆发诱导的长时程增强(LTP)增强,这依赖于腺苷A受体(AR)和原肌球蛋白相关激酶B信号传导,表明在突触可塑性现象中这些受体的激活增加。因此,降低Adk小鼠中腺苷A受体的活性可恢复正常的联合学习和情境记忆,并降低癫痫发作风险。我们得出结论,大脑中的ADK缺乏会触发神经元适应过程,导致突触可塑性失调、认知缺陷和癫痫发作风险增加。因此,ADK突变对大脑生理有内在影响,可能是癫痫发作和学习障碍发展的遗传危险因素。此外,我们的数据表明,通过治疗性阻断AR活性可以减轻ADK缺乏症中的神经症状。
最近发现了一种基于腺苷激酶(Adk)基因突变的新型人类遗传疾病(OMIM #614300)。受影响的患者会发展为肝性脑病、癫痫发作和严重的认知障碍。为了模拟和理解人类突变的神经学表型,我们生成了一种新的条件性敲除小鼠,其大脑特异性缺失Adk(Adk)。与ADK缺乏症患者相似,Adk小鼠出现癫痫发作和认知缺陷。我们确定基础突触传递增加和腺苷A受体(AR)依赖性突触可塑性增强是控制这些表型的潜在机制。我们的数据表明,ADK缺乏症患者的神经学表型是大脑中ADK缺乏所固有的,并且通过治疗性阻断AR活性可以减轻ADK缺乏症中的神经症状。