Suppr超能文献

疫情曲线预测:一种监督分类方法。

Prediction of an Epidemic Curve: A Supervised Classification Approach.

作者信息

Nsoesie Elaine O, Beckman Richard, Marathe Madhav, Lewis Bryan

机构信息

Network Dynamics and Simulation Science Laboratory, Virginia Bioinformatics Institute at Virginia Tech.

出版信息

Stat Commun Infect Dis. 2011 Jan 1;3(1). doi: 10.2202/1948-4690.1038. Epub 2011 Oct 4.

Abstract

Classification methods are widely used for identifying underlying groupings within datasets and predicting the class for new data objects given a trained classifier. This study introduces a project aimed at using a combination of simulations and classification techniques to predict epidemic curves and infer underlying disease parameters for an ongoing outbreak.Six supervised classification methods (random forest, support vector machines, nearest neighbor with three decision rules, linear and flexible discriminant analysis) were used in identifying partial epidemic curves from six agent-based stochastic simulations of influenza epidemics. The accuracy of the methods was compared using a performance metric based on the McNemar test.The findings showed that: (1) assumptions made by the methods regarding the structure of an epidemic curve influences their performance i.e. methods with fewer assumptions perform best, (2) the performance of most methods is consistent across different individual-based networks for Seattle, Los Angeles and New York and (3) combining classifiers using a weighting approach does not guarantee better prediction.

摘要

分类方法被广泛用于识别数据集中的潜在分组,并在给定训练好的分类器的情况下预测新数据对象的类别。本研究介绍了一个项目,旨在结合模拟和分类技术来预测疫情曲线,并推断正在爆发的疫情的潜在疾病参数。六种监督分类方法(随机森林、支持向量机、具有三种决策规则的最近邻、线性和灵活判别分析)被用于从六个基于主体的流感疫情随机模拟中识别部分疫情曲线。使用基于麦克尼马尔检验的性能指标比较了这些方法的准确性。研究结果表明:(1)这些方法对疫情曲线结构所做的假设会影响其性能,即假设较少的方法表现最佳;(2)大多数方法在西雅图、洛杉矶和纽约不同的基于个体的网络中的性能是一致的;(3)使用加权方法组合分类器并不能保证更好的预测。

相似文献

1
Prediction of an Epidemic Curve: A Supervised Classification Approach.疫情曲线预测:一种监督分类方法。
Stat Commun Infect Dis. 2011 Jan 1;3(1). doi: 10.2202/1948-4690.1038. Epub 2011 Oct 4.
5
Supervised learning and prediction of spatial epidemics.空间流行病的监督学习与预测
Spat Spatiotemporal Epidemiol. 2014 Oct;11:59-77. doi: 10.1016/j.sste.2014.08.003. Epub 2014 Sep 16.
10
Three learning phases for radial-basis-function networks.径向基函数网络的三个学习阶段。
Neural Netw. 2001 May;14(4-5):439-58. doi: 10.1016/s0893-6080(01)00027-2.

引用本文的文献

5
Forecasting the 2013-2014 influenza season using Wikipedia.利用维基百科预测2013 - 2014年流感季节。
PLoS Comput Biol. 2015 May 14;11(5):e1004239. doi: 10.1371/journal.pcbi.1004239. eCollection 2015 May.
6
Influenza forecasting in human populations: a scoping review.人群中的流感预测:一项范围综述
PLoS One. 2014 Apr 8;9(4):e94130. doi: 10.1371/journal.pone.0094130. eCollection 2014.
8
A Simulation Optimization Approach to Epidemic Forecasting.一种用于疫情预测的模拟优化方法。
PLoS One. 2013 Jun 27;8(6):e67164. doi: 10.1371/journal.pone.0067164. Print 2013.

本文引用的文献

2
Real-time estimation and prediction for pandemic A/H1N1(2009) in Japan.实时估计和预测日本的大流行性 A/H1N1(2009)。
J Infect Chemother. 2011 Aug;17(4):468-72. doi: 10.1007/s10156-010-0200-3. Epub 2011 Mar 9.
8
Modelling to contain pandemics.遏制大流行病的建模。
Nature. 2009 Aug 6;460(7256):687. doi: 10.1038/460687a.
9
Bayesian prediction of an epidemic curve.疫情曲线的贝叶斯预测。
J Biomed Inform. 2009 Feb;42(1):90-9. doi: 10.1016/j.jbi.2008.05.013. Epub 2008 Jun 13.
10
Modeling targeted layered containment of an influenza pandemic in the United States.美国流感大流行的目标分层防控建模
Proc Natl Acad Sci U S A. 2008 Mar 25;105(12):4639-44. doi: 10.1073/pnas.0706849105. Epub 2008 Mar 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验