Suppr超能文献

通过自养微生物群落合成商品化学品。

Electrosynthesis of commodity chemicals by an autotrophic microbial community.

机构信息

Department of Microbiology and Immunology, Marine Biomedicine and Environmental Science Center, Medical University of South Carolina, Charleston, South Carolina, USA.

出版信息

Appl Environ Microbiol. 2012 Dec;78(23):8412-20. doi: 10.1128/AEM.02401-12. Epub 2012 Sep 21.

Abstract

A microbial community originating from brewery waste produced methane, acetate, and hydrogen when selected on a granular graphite cathode poised at -590 mV versus the standard hydrogen electrode (SHE) with CO(2) as the only carbon source. This is the first report on the simultaneous electrosynthesis of these commodity chemicals and the first description of electroacetogenesis by a microbial community. Deep sequencing of the active community 16S rRNA revealed a dynamic microbial community composed of an invariant Archaea population of Methanobacterium spp. and a shifting Bacteria population. Acetobacterium spp. were the most abundant Bacteria on the cathode when acetogenesis dominated. Methane was generally the dominant product with rates increasing from <1 to 7 mM day(-1) (per cathode liquid volume) and was concomitantly produced with acetate and hydrogen. Acetogenesis increased to >4 mM day(-1) (accumulated to 28.5 mM over 12 days), and methanogenesis ceased following the addition of 2-bromoethanesulfonic acid. Traces of hydrogen accumulated during initial selection and subsequently accelerated to >11 mM day(-1) (versus 0.045 mM day(-1) abiotic production). The hypothesis of electrosynthetic biocatalysis occurring at the microbe-electrode interface was supported by a catalytic wave (midpoint potential of -460 mV versus SHE) in cyclic voltammetry scans of the biocathode, the lack of redox active components in the medium, and the generation of comparatively high amounts of products (even after medium exchange). In addition, the volumetric production rates of these three commodity chemicals are marked improvements for electrosynthesis, advancing the process toward economic feasibility.

摘要

从啤酒厂废水中分离出的微生物群落,在以 CO2 作为唯一碳源、在颗粒状石墨阴极上施加-590 mV(相对于标准氢电极)的电势条件下,可产生甲烷、乙酸和氢气。这是首次报道通过微生物群落同时电合成这些商品化学品,也是首次描述微生物群落的电乙酰生成作用。对活性群落 16S rRNA 的深度测序揭示了一个动态的微生物群落,由不变的古菌种群 Methanobacterium spp. 和不断变化的细菌种群组成。当产乙酸作用占主导地位时,Acetobacterium spp. 是阴极上最丰富的细菌。当产甲烷作用占主导地位时,甲烷通常是主要产物,其生成速率从<1 增加到 7 mM·day-1(按阴极液体体积计),并与乙酸和氢气同时产生。产乙酸作用增加到>4 mM·day-1(在 12 天内积累到 28.5 mM),并在添加 2-溴乙磺酸后停止产甲烷作用。在最初的选择过程中积累了少量氢气,随后加速到>11 mM·day-1(与非生物生产的 0.045 mM·day-1 相比)。电合成生物催化作用发生在微生物-电极界面的假设得到了循环伏安扫描中生物阴极催化波(相对于 SHE 的中点电位为-460 mV)、介质中缺乏氧化还原活性成分以及产生相对较高量产物(即使在介质交换后)的支持。此外,这三种商品化学品的体积生产速率是电合成的显著改进,使该过程更接近经济可行性。

相似文献

1
Electrosynthesis of commodity chemicals by an autotrophic microbial community.
Appl Environ Microbiol. 2012 Dec;78(23):8412-20. doi: 10.1128/AEM.02401-12. Epub 2012 Sep 21.
2
Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane.
Appl Environ Microbiol. 2011 Oct;77(19):6780-7. doi: 10.1128/AEM.00288-11. Epub 2011 Aug 5.
3
Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic.
ISME J. 2010 Oct;4(10):1326-39. doi: 10.1038/ismej.2010.57. Epub 2010 May 6.
4
Microbial methane production in deep aquifer associated with the accretionary prism in Japan.
ISME J. 2010 Apr;4(4):531-41. doi: 10.1038/ismej.2009.132. Epub 2009 Dec 3.
6
Effect of spatial differences in microbial activity, pH, and substrate levels on methanogenesis initiation in refuse.
Appl Environ Microbiol. 2011 Apr;77(7):2381-91. doi: 10.1128/AEM.02349-10. Epub 2011 Feb 4.
7
Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors.
Appl Microbiol Biotechnol. 2013 Nov;97(22):9885-95. doi: 10.1007/s00253-013-5025-4. Epub 2013 Jun 18.
8
A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer.
Appl Environ Microbiol. 2011 Sep;77(17):5955-65. doi: 10.1128/AEM.00220-11. Epub 2011 Jul 15.
9
10
Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave.
ISME J. 2009 Sep;3(9):1093-104. doi: 10.1038/ismej.2009.57. Epub 2009 May 28.

引用本文的文献

1
Viral diversity and host associations in microbial electrolysis cells.
ISME Commun. 2024 Nov 15;4(1):ycae143. doi: 10.1093/ismeco/ycae143. eCollection 2024 Jan.
2
Role of the cathode chamber in microbial electrosynthesis: A comprehensive review of key factors.
Eng Microbiol. 2024 Feb 17;4(3):100141. doi: 10.1016/j.engmic.2024.100141. eCollection 2024 Sep.
3
Low electric current in a bioelectrochemical system facilitates ethanol production from CO using CO-enriched mixed culture.
Front Microbiol. 2024 Aug 29;15:1438758. doi: 10.3389/fmicb.2024.1438758. eCollection 2024.
4
Advanced Electroanalysis for Electrosynthesis.
ACS Org Inorg Au. 2023 Nov 29;4(2):141-187. doi: 10.1021/acsorginorgau.3c00051. eCollection 2024 Apr 3.
5
Effect of anode material and dispersal limitation on the performance and biofilm community in microbial electrolysis cells.
Biofilm. 2023 Oct 10;6:100161. doi: 10.1016/j.bioflm.2023.100161. eCollection 2023 Dec 15.
6
Evidence of competition between electrogens shaping electroactive microbial communities in microbial electrolysis cells.
Front Microbiol. 2022 Dec 16;13:959211. doi: 10.3389/fmicb.2022.959211. eCollection 2022.
7
A short review of graphene in the microbial electrosynthesis of biochemicals from carbon dioxide.
RSC Adv. 2022 Aug 15;12(35):22770-22782. doi: 10.1039/d2ra02038f. eCollection 2022 Aug 10.
9
A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies.
RSC Adv. 2022 Jun 1;12(25):16105-16118. doi: 10.1039/d1ra08796g. eCollection 2022 May 23.
10
Emerging bioelectrochemical technologies for biogas production and upgrading in cascading circular bioenergy systems.
iScience. 2021 Aug 18;24(9):102998. doi: 10.1016/j.isci.2021.102998. eCollection 2021 Sep 24.

本文引用的文献

1
Enrichment of microbial electrolysis cell biocathodes from sediment microbial fuel cell bioanodes.
Appl Environ Microbiol. 2012 Aug;78(15):5212-9. doi: 10.1128/AEM.00480-12. Epub 2012 May 18.
3
Integrated electromicrobial conversion of CO2 to higher alcohols.
Science. 2012 Mar 30;335(6076):1596. doi: 10.1126/science.1217643.
4
UCHIME improves sensitivity and speed of chimera detection.
Bioinformatics. 2011 Aug 15;27(16):2194-200. doi: 10.1093/bioinformatics/btr381. Epub 2011 Jun 23.
5
Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8172-6. doi: 10.1073/pnas.1100682108. Epub 2011 May 9.
6
Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis.
Appl Environ Microbiol. 2011 May;77(10):3219-26. doi: 10.1128/AEM.02810-10. Epub 2011 Mar 18.
7
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms.
Appl Environ Microbiol. 2011 May;77(9):2882-6. doi: 10.1128/AEM.02642-10. Epub 2011 Mar 4.
9
Microbial electrosynthesis - revisiting the electrical route for microbial production.
Nat Rev Microbiol. 2010 Oct;8(10):706-16. doi: 10.1038/nrmicro2422.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验