Suppr超能文献

骨折为主的沉积物中厌氧氧化甲烷的宏观生物膜。

Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane.

机构信息

Oregon State University, 104 COAS Administration Building, Corvallis, OR 97331, USA.

出版信息

Appl Environ Microbiol. 2011 Oct;77(19):6780-7. doi: 10.1128/AEM.00288-11. Epub 2011 Aug 5.

Abstract

Methane release from seafloor sediments is moderated, in part, by the anaerobic oxidation of methane (AOM) performed by consortia of archaea and bacteria. These consortia occur as isolated cells and aggregates within the sulfate-methane transition (SMT) of diffusion and seep-dominant environments. Here we report on a new SMT setting where the AOM consortium occurs as macroscopic pink to orange biofilms within subseafloor fractures. Biofilm samples recovered from the Indian and northeast Pacific Oceans had a cellular abundance of 10(7) to 10(8) cells cm(-3). This cell density is 2 to 3 orders of magnitude greater than that in the surrounding sediments. Sequencing of bacterial 16S rRNA genes indicated that the bacterial component is dominated by Deltaproteobacteria, candidate division WS3, and Chloroflexi, representing 46%, 15%, and 10% of clones, respectively. In addition, major archaeal taxa found in the biofilm were related to the ANME-1 clade, Thermoplasmatales, and Desulfurococcales, representing 73%, 11%, and 10% of archaeal clones, respectively. The sequences of all major taxa were similar to sequences previously reported from cold seep environments. PhyloChip microarray analysis detected all bacterial phyla identified by the clone library plus an additional 44 phyla. However, sequencing detected more archaea than the PhyloChip within the phyla of Methanosarcinales and Desulfurococcales. The stable carbon isotope composition of the biofilm from the SMT (-35 to -43‰) suggests that the production of the biofilm is associated with AOM. These biofilms are a novel, but apparently widespread, aggregation of cells represented by the ANME-1 clade that occur in methane-rich marine sediments.

摘要

海底沉积物中的甲烷释放受到一定程度的调节,部分原因是古菌和细菌的厌氧甲烷氧化(AOM)作用。这些菌群以独立细胞和聚集体的形式存在于扩散和渗漏为主的环境中的硫酸盐-甲烷过渡(SMT)区。在这里,我们报告了一个新的 SMT 环境,其中 AOM 菌群以海底裂缝内的宏观粉红色到橙色生物膜形式存在。从印度洋和东北太平洋回收的生物膜样本的细胞丰度为 10(7) 到 10(8) 个细胞 cm(-3)。这个细胞密度比周围沉积物中的细胞密度高 2 到 3 个数量级。细菌 16S rRNA 基因的测序表明,细菌部分主要由 Deltaproteobacteria、候选门 WS3 和 Chloroflexi 组成,分别占克隆的 46%、15%和 10%。此外,在生物膜中发现的主要古菌类群与 ANME-1 进化枝、Thermoplasmatales 和 Desulfurococcales 有关,分别占古菌克隆的 73%、11%和 10%。所有主要分类群的序列与先前从冷渗环境中报道的序列相似。PhyloChip 微阵列分析检测到克隆文库中鉴定的所有细菌门,外加另外 44 个门。然而,测序在 Methanosarcinales 和 Desulfurococcales 等门类中检测到的古菌数量超过了 PhyloChip。SMT 处生物膜的稳定碳同位素组成(-35 至-43‰)表明生物膜的产生与 AOM 有关。这些生物膜是一种新的、但显然广泛存在的、以 ANME-1 进化枝为代表的细胞聚集,存在于富含甲烷的海洋沉积物中。

相似文献

1
Macroscopic biofilms in fracture-dominated sediment that anaerobically oxidize methane.
Appl Environ Microbiol. 2011 Oct;77(19):6780-7. doi: 10.1128/AEM.00288-11. Epub 2011 Aug 5.
3
Enrichment of anaerobic methanotrophs in sulfate-reducing membrane bioreactors.
Biotechnol Bioeng. 2009 Oct 15;104(3):458-70. doi: 10.1002/bit.22412.
4
Microbial characterization of a subzero, hypersaline methane seep in the Canadian High Arctic.
ISME J. 2010 Oct;4(10):1326-39. doi: 10.1038/ismej.2010.57. Epub 2010 May 6.
5
Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea.
Appl Environ Microbiol. 2007 May;73(10):3348-62. doi: 10.1128/AEM.00016-07. Epub 2007 Mar 16.
6
Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea.
Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.02638-18. Print 2019 Apr 1.
7
Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments.
Appl Environ Microbiol. 2001 Apr;67(4):1922-34. doi: 10.1128/AEM.67.4.1922-1934.2001.
8
Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments.
ISME J. 2012 May;6(5):1018-31. doi: 10.1038/ismej.2011.164. Epub 2011 Nov 17.
10
Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities.
Appl Environ Microbiol. 2002 Apr;68(4):1994-2007. doi: 10.1128/AEM.68.4.1994-2007.2002.

引用本文的文献

1
Isolation and characterization of a bacterium affiliated with the hitherto uncultured candidate phylum WOR-3 from a deep-sea hydrothermal fluid.
Appl Environ Microbiol. 2025 Jul 23;91(7):e0018825. doi: 10.1128/aem.00188-25. Epub 2025 Jun 10.
2
An astrobiological perspective on microbial biofilms: their importance for habitability and production of detectable and lasting biosignatures.
Appl Environ Microbiol. 2025 Mar 19;91(3):e0177824. doi: 10.1128/aem.01778-24. Epub 2025 Feb 10.
3
Aardvark: Composite Visualizations of Trees, Time-Series, and Images.
IEEE Trans Vis Comput Graph. 2025 Jan;31(1):1290-1300. doi: 10.1109/TVCG.2024.3456193. Epub 2024 Nov 25.
5
Distinct methane-dependent biogeochemical states in Arctic seafloor gas hydrate mounds.
Nat Commun. 2021 Nov 2;12(1):6296. doi: 10.1038/s41467-021-26549-5.
7
Active microbial biofilms in deep poor porous continental subsurface rocks.
Sci Rep. 2018 Jan 24;8(1):1538. doi: 10.1038/s41598-018-19903-z.
8
Global Distribution Patterns and Pangenomic Diversity of the Candidate Phylum "Latescibacteria" (WS3).
Appl Environ Microbiol. 2017 May 1;83(10). doi: 10.1128/AEM.00521-17. Print 2017 May 15.
9
In Silico Analysis of the Metabolic Potential and Niche Specialization of Candidate Phylum "Latescibacteria" (WS3).
PLoS One. 2015 Jun 3;10(6):e0127499. doi: 10.1371/journal.pone.0127499. eCollection 2015.
10
Grappling archaea: ultrastructural analyses of an uncultivated, cold-loving archaeon, and its biofilm.
Front Microbiol. 2014 Aug 5;5:397. doi: 10.3389/fmicb.2014.00397. eCollection 2014.

本文引用的文献

2
Deep-sea oil plume enriches indigenous oil-degrading bacteria.
Science. 2010 Oct 8;330(6001):204-8. doi: 10.1126/science.1195979. Epub 2010 Aug 24.
3
Biogeochemistry. The ongoing mystery of sea-floor methane.
Science. 2010 Jul 16;329(5989):288-9. doi: 10.1126/science.1189966.
4
Prokaryotic community structure and diversity in the sediments of an active submarine mud volcano (Kazan mud volcano, East Mediterranean Sea).
FEMS Microbiol Ecol. 2010 Jun;72(3):429-44. doi: 10.1111/j.1574-6941.2010.00857.x. Epub 2010 Mar 3.
5
Molecular evidence that phylogenetically diverged ciliates are active in microbial mats of deep-sea cold-seep sediment.
J Eukaryot Microbiol. 2010 Jan-Feb;57(1):76-86. doi: 10.1111/j.1550-7408.2009.00457.x. Epub 2009 Dec 11.
6
Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities.
Appl Environ Microbiol. 2009 Dec;75(23):7537-41. doi: 10.1128/AEM.01541-09. Epub 2009 Oct 2.
7
Archaeal communities associated with shallow to deep subseafloor sediments of the New Caledonia Basin.
Environ Microbiol. 2009 Sep;11(9):2446-62. doi: 10.1111/j.1462-2920.2009.01976.x. Epub 2009 Jul 16.
8
Anaerobic oxidation of methane: progress with an unknown process.
Annu Rev Microbiol. 2009;63:311-34. doi: 10.1146/annurev.micro.61.080706.093130.
9
FastTree: computing large minimum evolution trees with profiles instead of a distance matrix.
Mol Biol Evol. 2009 Jul;26(7):1641-50. doi: 10.1093/molbev/msp077. Epub 2009 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验