Suppr超能文献

负载纤维蛋白的多孔聚乙二醇水凝胶作为血管化组织形成的支架材料。

Fibrin-loaded porous poly(ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation.

机构信息

Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA.

出版信息

Tissue Eng Part A. 2013 Jan;19(1-2):224-34. doi: 10.1089/ten.tea.2012.0120. Epub 2012 Sep 24.

Abstract

Vascular network formation within biomaterial scaffolds is essential for the generation of properly functioning engineered tissues. In this study, a method is described for generating composite hydrogels in which porous poly(ethylene glycol) (PEG) hydrogels serve as scaffolds for mechanical and structural support, and fibrin is loaded within the pores to induce vascularized tissue formation. Porous PEG hydrogels were generated by a salt leaching technique with 100-150-μm pore size and thrombin (Tb) preloaded within the scaffold. Fibrinogen (Fg) was loaded into pores with varying concentrations and polymerized into fibrin due to the presence of Tb, with loading efficiencies ranging from 79.9% to 82.4%. Fibrin was distributed throughout the entire porous hydrogels, lasted for greater than 20 days, and increased hydrogel mechanical stiffness. A rodent subcutaneous implant model was used to evaluate the influence of fibrin loading on in vivo response. At weeks 1, 2, and 3, all hydrogels had significant tissue invasion, but no difference in the depth of invasion was found with the Fg concentration. Hydrogels with fibrin loading induced more vascularization, with a significantly higher vascular density at 20 mg/mL (week 1) and 40 mg/mL (weeks 2 and 3) Fg concentration compared to hydrogels without fibrin. In conclusion, we have developed a composite hydrogel that supports rapid vascularized tissue ingrowth, and thus holds great potential for tissue engineering applications.

摘要

在生物材料支架内形成血管网络对于生成正常功能的工程组织至关重要。在这项研究中,描述了一种生成复合水凝胶的方法,其中多孔聚乙二醇(PEG)水凝胶作为机械和结构支撑的支架,纤维蛋白加载在孔内以诱导血管化组织形成。通过盐浸技术生成具有 100-150-μm 孔径的多孔 PEG 水凝胶,并在支架内预先加载凝血酶(Tb)。纤维蛋白原(Fg)以不同浓度加载到孔中,并由于存在 Tb 而聚合为纤维蛋白,加载效率范围为 79.9%至 82.4%。纤维蛋白分布在整个多孔水凝胶中,持续时间超过 20 天,并增加了水凝胶的机械刚度。使用啮齿动物皮下植入模型评估纤维蛋白加载对体内反应的影响。在第 1、2 和 3 周,所有水凝胶均有明显的组织侵入,但纤维蛋白浓度对侵入深度没有差异。含有纤维蛋白的水凝胶诱导更多的血管生成,在 20mg/mL(第 1 周)和 40mg/mL(第 2 和 3 周)纤维蛋白浓度下,血管密度明显高于无纤维蛋白的水凝胶。总之,我们开发了一种支持快速血管化组织内生长的复合水凝胶,因此在组织工程应用中具有很大的潜力。

相似文献

1
Fibrin-loaded porous poly(ethylene glycol) hydrogels as scaffold materials for vascularized tissue formation.
Tissue Eng Part A. 2013 Jan;19(1-2):224-34. doi: 10.1089/ten.tea.2012.0120. Epub 2012 Sep 24.
2
The role of pore size on vascularization and tissue remodeling in PEG hydrogels.
Biomaterials. 2011 Sep;32(26):6045-51. doi: 10.1016/j.biomaterials.2011.04.066. Epub 2011 Jun 12.
3
Design of a composite biomaterial system for tissue engineering applications.
Acta Biomater. 2014 Mar;10(3):1177-86. doi: 10.1016/j.actbio.2013.11.029. Epub 2013 Dec 7.
4
Pore Interconnectivity Influences Growth Factor-Mediated Vascularization in Sphere-Templated Hydrogels.
Tissue Eng Part C Methods. 2015 Aug;21(8):773-85. doi: 10.1089/ten.TEC.2014.0454. Epub 2015 Feb 19.
5
Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
Acta Biomater. 2009 Jul;5(6):1884-97. doi: 10.1016/j.actbio.2009.01.036. Epub 2009 Feb 1.
6
Incorporation of a silicon-based polymer to PEG-DA templated hydrogel scaffolds for bioactivity and osteoinductivity.
Acta Biomater. 2019 Nov;99:100-109. doi: 10.1016/j.actbio.2019.09.018. Epub 2019 Sep 16.
10
Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.
Biomaterials. 2015 Dec;72:61-73. doi: 10.1016/j.biomaterials.2015.08.049. Epub 2015 Aug 29.

引用本文的文献

1
Blood vessels in a dish: the evolution, challenges, and potential of vascularized tissues and organoids.
Front Cardiovasc Med. 2024 Jun 13;11:1336910. doi: 10.3389/fcvm.2024.1336910. eCollection 2024.
2
Biofabrication of engineered blood vessels for biomedical applications.
Sci Technol Adv Mater. 2024 Mar 21;25(1):2330339. doi: 10.1080/14686996.2024.2330339. eCollection 2024.
3
Vascularization of PEGylated fibrin hydrogels increases the proliferation of human iPSC-cardiomyocytes.
J Biomed Mater Res A. 2024 Apr;112(4):625-634. doi: 10.1002/jbm.a.37662. Epub 2023 Dec 28.
5
Recent Developments in Biopolymer-Based Hydrogels for Tissue Engineering Applications.
Biomolecules. 2023 Feb 2;13(2):280. doi: 10.3390/biom13020280.
7
Physical, Mechanical, and Biological Properties of Fibrin Scaffolds for Cartilage Repair.
Int J Mol Sci. 2022 Aug 30;23(17):9879. doi: 10.3390/ijms23179879.
8
Injectable Biomaterials for Dental Tissue Regeneration.
Int J Mol Sci. 2020 May 13;21(10):3442. doi: 10.3390/ijms21103442.
9
Evaluation of a polyurethane-reinforced hydrogel patch in a rat right ventricle wall replacement model.
Acta Biomater. 2020 Jan 1;101:206-218. doi: 10.1016/j.actbio.2019.10.026. Epub 2019 Oct 22.
10
Bijel-templated implantable biomaterials for enhancing tissue integration and vascularization.
Acta Biomater. 2019 Aug;94:173-182. doi: 10.1016/j.actbio.2019.06.031. Epub 2019 Jun 22.

本文引用的文献

1
Engineering vessel-like networks within multicellular fibrin-based constructs.
Biomaterials. 2011 Nov;32(31):7856-69. doi: 10.1016/j.biomaterials.2011.07.003. Epub 2011 Aug 4.
2
The role of pore size on vascularization and tissue remodeling in PEG hydrogels.
Biomaterials. 2011 Sep;32(26):6045-51. doi: 10.1016/j.biomaterials.2011.04.066. Epub 2011 Jun 12.
3
Molecular mechanisms affecting fibrin structure and stability.
Arterioscler Thromb Vasc Biol. 2011 Mar;31(3):494-9. doi: 10.1161/ATVBAHA.110.213389.
4
Synthesis of multilayered alginate microcapsules for the sustained release of fibroblast growth factor-1.
J Biomed Mater Res A. 2010 Nov;95(2):632-40. doi: 10.1002/jbm.a.32883.
7
Multimodal release of transforming growth factor-β1 and the BB isoform of platelet derived growth factor from PEGylated fibrin gels.
J Control Release. 2010 Oct 15;147(2):180-6. doi: 10.1016/j.jconrel.2010.03.026. Epub 2010 Apr 8.
8
Generation of porous poly(ethylene glycol) hydrogels by salt leaching.
Tissue Eng Part C Methods. 2010 Oct;16(5):905-12. doi: 10.1089/ten.TEC.2009.0646.
9
Periosteum-guided prefabrication of vascularized bone of clinical shape and volume.
Plast Reconstr Surg. 2009 Sep;124(3):787-795. doi: 10.1097/PRS.0b013e3181b17a91.
10
Fibrin gels and their clinical and bioengineering applications.
J R Soc Interface. 2009 Jan 6;6(30):1-10. doi: 10.1098/rsif.2008.0327.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验