University of Edinburgh, Edinburgh, UK.
Acc Chem Res. 2013 Mar 19;46(3):723-32. doi: 10.1021/ar300092y. Epub 2012 Sep 24.
In all branches of toxicology, the biologically effective dose (BED) is the fraction of the total dose of a toxin that actually drives any toxic effect. Knowledge of the BED has a number of applications including in building structure-activity relationships, the selection of metrics, the design of safe particles, and the determination of when a nanoparticle (NP) can be considered to be "new" for regulatory purposes. In particle toxicology, we define the BED as "the entity within any dose of particles in tissue that drives a critical pathophysiogically relevant form of toxicity (e.g., oxidative stress, inflammation, genotoxicity, or proliferation) or a process that leads to it." In conventional chemical toxicology, researchers generally use the mass as the metric to describe dose (such as mass per unit tissue or cells in culture) because of its convenience. Concentration, calculated from mass, may also figure in any description of dose. In the case of a nanoparticle dose, researchers use either the mass or the surface area. The mass of nanoparticles is not the only driver of their activity: the surfaces of insoluble particles interact with biological systems, and soluble nanoparticles can release factors that interact with these systems. Nanoparticle shape can modify activity. In this Account, we describe the current knowledge of the BED as it pertains to different NP types. Soluble toxins released by NPs represent one potential indicator of BED for wholly or partially soluble NPs composed of copper or zinc. Rapid dissolution of these NPs into their toxic ions in the acidic environment of the macrophage phagolysosome causes those ions to accumulate, which leads to lysosome destabilization and inflammation. In contrast, soluble NPs that release low toxicity ions, such as magnesium oxide NPs, are not inflammogenic. For insoluble NPs, ζ potential can serve as a BED measurement because the exposure of the particle surface to the acidic milieu of the phagolysosome and interactions with the lysosomal membrane can compromise the integrity of the NPs. Researchers have explored oxidative potential of NPs most extensively as an indicator of the BED: the ability of an NP to cause oxidative stress in cells is a key factor in determining cell toxicity, inflammogenicity, and oxidative DNA adduct formation. Finally we discuss BEDs for high aspect ratio nanoparticles because long fibers or nanoplatelets can cause inflammation and further effects. These consequences arise from the paradoxically small aerodynamic diameter of fibers or thin platelets. As a result, these NPs can deposit beyond the ciliated airways where their extended dimensions prevent them from being fully phagocytosed by macrophages, leading to frustrated phagocytosis. Although knowledge is accumulating on the BED for NPs, many questions and challenges remain in understanding and utilizing this important nanotoxicological parameter.
在毒理学的所有分支中,生物有效剂量(BED)是毒素总剂量中实际驱动任何毒性效应的部分。BED 的知识有许多应用,包括构建结构-活性关系、选择度量标准、设计安全颗粒以及确定何时可以将纳米颗粒(NP)视为具有监管目的的“新”物质。在颗粒毒理学中,我们将 BED 定义为“组织中任何颗粒剂量内驱动关键病理相关毒性形式(例如氧化应激、炎症、遗传毒性或增殖)或导致其发生的过程的实体”。在传统的化学毒理学中,由于其便利性,研究人员通常使用质量作为描述剂量的指标(例如单位组织或培养细胞中的质量)。浓度是从质量计算得出的,也可能出现在任何剂量描述中。对于纳米颗粒剂量,研究人员使用质量或表面积。纳米颗粒的质量并不是其活性的唯一驱动因素:不溶性颗粒的表面与生物系统相互作用,而可溶性纳米颗粒可以释放与这些系统相互作用的因子。纳米颗粒的形状可以改变其活性。在本报告中,我们描述了与不同 NP 类型相关的 BED 的当前知识。纳米颗粒释放的可溶性毒素代表了由铜或锌组成的完全或部分可溶性 NP 的 BED 的一个潜在指标。这些 NP 在巨噬细胞吞噬体的酸性环境中迅速溶解为其毒性离子,导致这些离子积累,从而导致溶酶体不稳定和炎症。相比之下,释放低毒性离子的可溶性 NP,如氧化镁 NP,没有炎症性。对于不溶性 NP,ζ 电位可以作为 BED 测量指标,因为颗粒表面暴露于吞噬体的酸性环境中和与溶酶体膜的相互作用会破坏 NP 的完整性。研究人员最广泛地探索了 NP 的氧化潜力作为 BED 的指标:NP 引起细胞氧化应激的能力是决定细胞毒性、致炎和氧化 DNA 加合物形成的关键因素。最后,我们讨论了高纵横比纳米颗粒的 BED,因为长纤维或纳米板可以引起炎症和进一步的影响。这些后果源于纤维或薄血小板的悖论性小空气动力学直径。因此,这些 NP 可以沉积在纤毛气道之外,其延伸尺寸阻止它们被巨噬细胞完全吞噬,导致吞噬作用受阻。尽管关于 NP 的 BED 的知识在不断积累,但在理解和利用这个重要的纳米毒理学参数方面仍存在许多问题和挑战。