Suppr超能文献

重温刘易斯定律:各向异性在尺寸-拓扑相关性中的作用。

Lewis' law revisited: the role of anisotropy in size-topology correlations.

作者信息

Kim Sangwoo, Cai Muyun, Hilgenfeldt Sascha

机构信息

Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 W Green Street, Urbana, IL 61801, USA.

出版信息

New J Phys. 2014 Jan;16(January). doi: 10.1088/1367-2630/16/1/015024.

Abstract

Since F T Lewis' pioneering work in the 1920s, a linear correlation between the average in-plane area of domains in a two-dimensional (2D) cellular structure and the number of neighbors of the domains has been empirically proposed, with many supporting and dissenting findings in the ensuing decades. Revisiting Lewis' original experiment, we take a larger set of more detailed data on the cells in the epidermal layer of , and analyze the data in the light of recent results on size-topology correlations. We find that the correlation between the number-of-neighbor distribution (topology) and the area distribution is altered over that of many other 2D cellular systems (such as foams or disc packings), and that the systematic deviation can be explained by the anisotropic shape of the cells. We develop a novel theory of size-topology correlation taking into account the characteristic aspect ratio of the cells within the framework of a granocentric model, and show that both Lewis' and our experimental data is consistent with the theory. In contrast to the granocentric model for isotropic domains, the new theory results in an approximately linear correlation consistent with Lewis' law. These statistical effects can be understood from the increased number of configurations available to a plane-filling domain system with non-isotropic elements, for the first time providing a firm explanation of why Lewis' law is valid in some systems and fails in others.

摘要

自20世纪20年代F.T.刘易斯的开创性工作以来,二维(2D)细胞结构中区域的平均平面内面积与区域邻居数量之间的线性相关性已被经验性提出,在随后的几十年里有许多支持和反对的发现。重新审视刘易斯的原始实验,我们获取了关于某表皮层细胞的更大、更详细的数据集,并根据最近关于尺寸 - 拓扑相关性的结果对数据进行分析。我们发现,邻居数量分布(拓扑)与面积分布之间的相关性与许多其他二维细胞系统(如泡沫或圆盘堆积)不同,并且这种系统偏差可以由细胞的各向异性形状来解释。我们在颗粒中心模型的框架内考虑细胞的特征纵横比,发展了一种尺寸 - 拓扑相关性的新理论,并表明刘易斯的实验数据和我们的实验数据都与该理论一致。与各向同性区域的颗粒中心模型不同,新理论导致了与刘易斯定律一致的近似线性相关性。这些统计效应可以从具有非各向同性元素的平面填充区域系统可用构型数量的增加来理解,首次为刘易斯定律在某些系统中有效而在其他系统中失效提供了确凿的解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc5d/4451434/db42db1367a0/nihms595467f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验