Suppr超能文献

三维奔驰状水分子的分析模型。

Analytical model for three-dimensional Mercedes-Benz water molecules.

作者信息

Urbic T

机构信息

Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1000 Lubljana, Slovenia.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061503. doi: 10.1103/PhysRevE.85.061503. Epub 2012 Jun 25.

Abstract

We developed a statistical model which describes the thermal and volumetric properties of water-like molecules. A molecule is presented as a three-dimensional sphere with four hydrogen-bonding arms. Each water molecule interacts with its neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of a model developed before for a two-dimensional Mercedes-Benz model of water. We explored properties such as molar volume, density, heat capacity, thermal expansion coefficient, and isothermal compressibility as a function of temperature and pressure. We found that the volumetric and thermal properties follow the same trends with temperature as in real water and are in good general agreement with Monte Carlo simulations, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds upon increasing the temperature.

摘要

我们开发了一种统计模型,该模型描述了类水分子的热性质和体积性质。一个分子被表示为一个带有四个氢键臂的三维球体。每个水分子通过范德华相互作用和取向依赖的氢键相互作用与其相邻水分子相互作用。这个模型在很大程度上是解析性的,是之前为二维水的奔驰模型开发的模型的一个变体。我们研究了诸如摩尔体积、密度、热容、热膨胀系数和等温压缩率等性质随温度和压力的变化。我们发现,体积性质和热性质随温度的变化趋势与真实水相同,并且与蒙特卡罗模拟总体上吻合良好,包括密度反常、等温压缩率的最小值以及温度升高时氢键数量的减少。

相似文献

1
Analytical model for three-dimensional Mercedes-Benz water molecules.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 1):061503. doi: 10.1103/PhysRevE.85.061503. Epub 2012 Jun 25.
2
A statistical mechanical theory for a two-dimensional model of water.
J Chem Phys. 2010 Jun 14;132(22):224507. doi: 10.1063/1.3454193.
3
Liquid-liquid critical point in a simple analytical model of water.
Phys Rev E. 2016 Oct;94(4-1):042126. doi: 10.1103/PhysRevE.94.042126. Epub 2016 Oct 21.
4
Three-dimensional "Mercedes-Benz" model for water.
J Chem Phys. 2009 Aug 7;131(5):054505. doi: 10.1063/1.3183935.
5
An improved thermodynamic perturbation theory for Mercedes-Benz water.
J Chem Phys. 2007 Nov 7;127(17):174511. doi: 10.1063/1.2784124.
6
Theory for the three-dimensional Mercedes-Benz model of water.
J Chem Phys. 2009 Nov 21;131(19):194504. doi: 10.1063/1.3259970.
7
Analytical theory of the hydrophobic effect of solutes in water.
Phys Rev E. 2017 Sep;96(3-1):032101. doi: 10.1103/PhysRevE.96.032101. Epub 2017 Sep 1.
8
Simple model of hydrophobic hydration.
J Phys Chem B. 2012 May 31;116(21):6177-86. doi: 10.1021/jp300743a. Epub 2012 May 21.
9
Confined water: a Mercedes-Benz model study.
J Phys Chem B. 2006 Mar 16;110(10):4963-70. doi: 10.1021/jp055543f.

引用本文的文献

1
Isothermal-isobaric algorithm to study the effects of rotational degrees of freedom-Benz water model.
J Mol Liq. 2022 Mar 1;349. doi: 10.1016/j.molliq.2021.118152. Epub 2021 Nov 23.
2
Simple Model of Liquid Water Dynamics.
J Phys Chem B. 2023 Sep 21;127(37):7996-8001. doi: 10.1021/acs.jpcb.3c05212. Epub 2023 Sep 6.
3
Crustwater: Modeling Hydrophobic Solvation.
J Phys Chem B. 2022 Aug 18;126(32):6052-6062. doi: 10.1021/acs.jpcb.2c02695. Epub 2022 Aug 4.
4
Simple two-dimensional models of alcohols.
Phys Rev E. 2022 May;105(5-1):054608. doi: 10.1103/PhysRevE.105.054608.
5
Analytical 2-Dimensional Model of Nonpolar and Ionic Solvation in Water.
J Phys Chem B. 2021 Feb 25;125(7):1861-1873. doi: 10.1021/acs.jpcb.0c10329. Epub 2021 Feb 4.
6
Modelling water with simple Mercedes-Benz models.
Mol Simul. 2019;45(4-5):279-294. doi: 10.1080/08927022.2018.1502430. Epub 2018 Aug 1.
7
Water Is a Cagey Liquid.
J Am Chem Soc. 2018 Dec 12;140(49):17106-17113. doi: 10.1021/jacs.8b08856. Epub 2018 Dec 3.
8
Analytical theory of the hydrophobic effect of solutes in water.
Phys Rev E. 2017 Sep;96(3-1):032101. doi: 10.1103/PhysRevE.96.032101. Epub 2017 Sep 1.
9
How Water's Properties Are Encoded in Its Molecular Structure and Energies.
Chem Rev. 2017 Oct 11;117(19):12385-12414. doi: 10.1021/acs.chemrev.7b00259. Epub 2017 Sep 26.

本文引用的文献

2
Simple model of hydrophobic hydration.
J Phys Chem B. 2012 May 31;116(21):6177-86. doi: 10.1021/jp300743a. Epub 2012 May 21.
3
Hydrophobicity within the three-dimensional Mercedes-Benz model: potential of mean force.
J Chem Phys. 2011 Feb 14;134(6):065106. doi: 10.1063/1.3537734.
4
On the use of excess entropy scaling to describe the dynamic properties of water.
J Phys Chem B. 2010 Aug 19;114(32):10558-66. doi: 10.1021/jp1049155.
5
A statistical mechanical theory for a two-dimensional model of water.
J Chem Phys. 2010 Jun 14;132(22):224507. doi: 10.1063/1.3454193.
6
Relationship between structure, entropy, and diffusivity in water and water-like liquids.
J Phys Chem B. 2010 May 27;114(20):6995-7001. doi: 10.1021/jp101956u.
7
Revisiting waterlike network-forming lattice models.
J Chem Phys. 2009 Dec 14;131(22):224508. doi: 10.1063/1.3270000.
8
Theory for the three-dimensional Mercedes-Benz model of water.
J Chem Phys. 2009 Nov 21;131(19):194504. doi: 10.1063/1.3259970.
9
The inhomogeneous structure of water at ambient conditions.
Proc Natl Acad Sci U S A. 2009 Sep 8;106(36):15214-8. doi: 10.1073/pnas.0904743106. Epub 2009 Aug 13.
10
Three-dimensional "Mercedes-Benz" model for water.
J Chem Phys. 2009 Aug 7;131(5):054505. doi: 10.1063/1.3183935.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验