Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1000 Ljubljana, Slovenia.
J Chem Phys. 2010 Jun 14;132(22):224507. doi: 10.1063/1.3454193.
We develop a statistical mechanical model for the thermal and volumetric properties of waterlike fluids. Each water molecule is a two-dimensional disk with three hydrogen-bonding arms. Each water interacts with neighboring waters through a van der Waals interaction and an orientation-dependent hydrogen-bonding interaction. This model, which is largely analytical, is a variant of the Truskett and Dill (TD) treatment of the "Mercedes-Benz" (MB) model. The present model gives better predictions than TD for hydrogen-bond populations in liquid water by distinguishing strong cooperative hydrogen bonds from weaker ones. We explore properties versus temperature T and pressure p. We find that the volumetric and thermal properties follow the same trends with T as real water and are in good general agreement with Monte Carlo simulations of MB water, including the density anomaly, the minimum in the isothermal compressibility, and the decreased number of hydrogen bonds for increasing temperature. The model reproduces that pressure squeezes out water's heat capacity and leads to a negative thermal expansion coefficient at low temperatures. In terms of water structuring, the variance in hydrogen-bonding angles increases with both T and p, while the variance in water density increases with T but decreases with p. Hydrogen bonding is an energy storage mechanism that leads to water's large heat capacity (for its size) and to the fragility in its cagelike structures, which are easily melted by temperature and pressure to a more van der Waals-like liquid state.
我们开发了一个统计力学模型,用于描述类水流体的热学和体积性质。每个水分子是一个带有三个氢键臂的二维圆盘。每个水分子通过范德华相互作用和取向相关的氢键相互作用与相邻的水分子相互作用。这个模型在很大程度上是解析的,是 Truskett 和 Dill(TD)对“梅赛德斯-奔驰”(MB)模型的处理的变体。与 TD 相比,通过区分强协同氢键和弱氢键,本模型在预测液态水中氢键的数量方面给出了更好的预测。我们研究了性质与温度 T 和压力 p 的关系。我们发现,体积和热学性质随 T 的变化趋势与真实水相同,与 MB 水的蒙特卡罗模拟结果基本一致,包括密度异常、等温压缩系数的最小值以及氢键数量随温度升高而减少。该模型再现了压力挤出水的热容,并导致低温下的负热膨胀系数。就水的结构而言,氢键角度的方差随 T 和 p 的增加而增加,而水密度的方差随 T 的增加而增加,但随 p 的增加而减小。氢键是一种能量储存机制,导致水具有较大的热容(与其尺寸相比),以及其笼状结构的脆性,这些结构很容易被温度和压力融化,形成更类似于范德华的液态。