Suppr超能文献

用于多组分神经网络的非对称随机矩阵的特征值谱

Eigenvalue spectra of asymmetric random matrices for multicomponent neural networks.

作者信息

Wei Yi

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Jun;85(6 Pt 2):066116. doi: 10.1103/PhysRevE.85.066116. Epub 2012 Jun 15.

Abstract

This paper focuses on large neural networks whose synaptic connectivity matrices are randomly chosen from certain random matrix ensembles. The dynamics of these networks can be characterized by the eigenvalue spectra of their connectivity matrices. In reality, neurons in a network do not necessarily behave in a similar way, but may belong to several different categories. The first study of the spectra of two-component neural networks was carried out by Rajan and Abbott [Phys. Rev. Lett. 97, 188104 (2006)]. In their model, neurons are either "excitatory" or "inhibitory," and strengths of synapses from different types of neurons have Gaussian distributions with different means and variances. A surprising finding by Rajan and Abbott is that the eigenvalue spectra of these types of random synaptic matrices do not depend on the mean values of their elements. In this paper we prove that this is true even for a much more general type of random neural network, where there is a finite number of types of neurons and their synaptic strengths have correlated distributions. Furthermore, using the diagrammatic techniques, we calculate the explicit formula for the spectra of synaptic matrices of multicomponent neural networks.

摘要

本文聚焦于大型神经网络,其突触连接矩阵是从某些随机矩阵系综中随机选取的。这些网络的动力学特性可由其连接矩阵的特征值谱来表征。实际上,网络中的神经元不一定表现出相似的行为,而是可能属于几个不同的类别。对两组分神经网络谱的首次研究是由拉詹和阿博特进行的[《物理评论快报》97, 188104 (2006)]。在他们的模型中,神经元要么是“兴奋性的”,要么是“抑制性的”,并且来自不同类型神经元的突触强度具有均值和方差不同的高斯分布。拉詹和阿博特的一个惊人发现是,这些类型的随机突触矩阵的特征值谱并不依赖于其元素的均值。在本文中,我们证明即使对于一种更为一般类型的随机神经网络,即存在有限数量的神经元类型且其突触强度具有相关分布的情况,这也是成立的。此外,我们使用图解技术计算了多组分神经网络突触矩阵谱的显式公式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验