Suppr超能文献

神经网络随机矩阵的特征值谱

Eigenvalue spectra of random matrices for neural networks.

作者信息

Rajan Kanaka, Abbott L F

机构信息

Center for Neurobiology and Behavior, Columbia University,, College of Physicians and Surgeons, New York, New York 10032, USA.

出版信息

Phys Rev Lett. 2006 Nov 3;97(18):188104. doi: 10.1103/PhysRevLett.97.188104. Epub 2006 Nov 2.

Abstract

The dynamics of neural networks is influenced strongly by the spectrum of eigenvalues of the matrix describing their synaptic connectivity. In large networks, elements of the synaptic connectivity matrix can be chosen randomly from appropriate distributions, making results from random matrix theory highly relevant. Unfortunately, classic results on the eigenvalue spectra of random matrices do not apply to synaptic connectivity matrices because of the constraint that individual neurons are either excitatory or inhibitory. Therefore, we compute eigenvalue spectra of large random matrices with excitatory and inhibitory columns drawn from distributions with different means and equal or different variances.

摘要

神经网络的动力学受到描述其突触连接性的矩阵特征值谱的强烈影响。在大型网络中,突触连接矩阵的元素可以从适当的分布中随机选择,这使得随机矩阵理论的结果具有高度相关性。不幸的是,由于单个神经元要么是兴奋性的要么是抑制性的这一限制,关于随机矩阵特征值谱的经典结果不适用于突触连接矩阵。因此,我们计算具有从具有不同均值和相等或不同方差的分布中抽取的兴奋性和抑制性列的大型随机矩阵的特征值谱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验