Suppr超能文献

对称性在一类平衡神经网络中约束动力学。

Symmetries Constrain Dynamics in a Family of Balanced Neural Networks.

作者信息

Barreiro Andrea K, Kutz J Nathan, Shlizerman Eli

机构信息

Department of Mathematics, Southern Methodist University, POB 750156, Dallas, TX, 75275, USA.

Department of Applied Mathematics, University of Washington, Box 353925, Seattle, WA, 98195-3925, USA.

出版信息

J Math Neurosci. 2017 Oct 10;7(1):10. doi: 10.1186/s13408-017-0052-6.

Abstract

We examine a family of random firing-rate neural networks in which we enforce the neurobiological constraint of Dale's Law-each neuron makes either excitatory or inhibitory connections onto its post-synaptic targets. We find that this constrained system may be described as a perturbation from a system with nontrivial symmetries. We analyze the symmetric system using the tools of equivariant bifurcation theory and demonstrate that the symmetry-implied structures remain evident in the perturbed system. In comparison, spectral characteristics of the network coupling matrix are relatively uninformative about the behavior of the constrained system.

摘要

我们研究了一族随机发放率神经网络,在其中我们施加了戴尔定律的神经生物学约束——每个神经元对其突触后靶点仅形成兴奋性或抑制性连接。我们发现,这个受约束的系统可以被描述为一个具有非平凡对称性的系统的微扰。我们使用等变分岔理论工具分析了对称系统,并证明在微扰系统中,由对称性隐含的结构仍然明显。相比之下,网络耦合矩阵的谱特征对于受约束系统的行为提供的信息相对较少。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c123/5635020/5b921442603f/13408_2017_52_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验