Nandi Amitabha, Heinrich Doris, Lindner Benjamin
Max-Planck Institut für Physik komplexer Systeme, Nöthnitzer Str 38, 01187 Dresden, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Aug;86(2 Pt 1):021926. doi: 10.1103/PhysRevE.86.021926. Epub 2012 Aug 31.
In cell biology, time-resolved fluctuation analysis of tracer particles has recently gained great importance. One such method is the local mean-square displacement (MSD) analysis, which provides an estimate of two parameters as functions of time: the exponent of growth of the MSD and the diffusion coefficient. Here, we study the joint and marginal distributions of these parameters for Brownian motion with Gaussian velocity fluctuations, including the cases of vanishing correlations (overdamped Brownian motion) and of a finite negative velocity correlation (as observed in intracellular motion). Numerically, we demonstrate that a small number of MSD points is optimal for the estimation of the diffusion measures. Motivated by this observation, we derive an analytic approximation for the joint and marginal probability densities of the exponent and diffusion coefficient for the special case of two MSD points. These analytical results show good agreement with numerical simulations for sufficiently large window sizes. Our results might promote better statistical analysis of intracellular motility.
在细胞生物学中,示踪粒子的时间分辨涨落分析最近变得极为重要。其中一种方法是局部均方位移(MSD)分析,它能提供两个参数随时间变化的估计值:MSD的增长指数和扩散系数。在此,我们研究具有高斯速度涨落的布朗运动中这些参数的联合分布和边缘分布,包括相关性消失的情况(过阻尼布朗运动)以及有限负速度相关性的情况(如在细胞内运动中观察到的)。在数值上,我们证明少量的MSD点对于扩散测量的估计是最优的。受此观察结果的启发,我们针对两个MSD点的特殊情况推导了指数和扩散系数的联合概率密度与边缘概率密度的解析近似。这些分析结果与足够大窗口尺寸的数值模拟显示出良好的一致性。我们的结果可能会促进对细胞内运动更好的统计分析。