Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwashi, Chiba 277-8563, Japan.
Phys Rev Lett. 2012 Jul 27;109(4):044101. doi: 10.1103/PhysRevLett.109.044101. Epub 2012 Jul 24.
Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.
时滞诱发的极限环振荡在各种系统中广泛存在,但针对它们的系统相减理论尚未得到发展。在这里,我们提出了一个实用的理论框架,用于计算具有无限维相空间的时滞诱导极限环的相位响应函数 Z(θ),这是该理论的一个基本量。我们表明,Z(θ)可以作为与延迟微分方程的适当双线性形式相关联的伴随方程的零本征函数来获得。我们通过两个生物振荡器验证了所提出框架的有效性,并表明所得到的相方程预测了引人入胜的多模态锁定行为。