Suppr超能文献

伴随方法为延迟诱导振荡提供相位响应函数。

Adjoint method provides phase response functions for delay-induced oscillations.

机构信息

Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwashi, Chiba 277-8563, Japan.

出版信息

Phys Rev Lett. 2012 Jul 27;109(4):044101. doi: 10.1103/PhysRevLett.109.044101. Epub 2012 Jul 24.

Abstract

Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic phase-reduction theory for them has yet to be developed. Here we present a practical theoretical framework to calculate the phase response function Z(θ), a fundamental quantity for the theory, of delay-induced limit cycles with infinite-dimensional phase space. We show that Z(θ) can be obtained as a zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay differential equations. We confirm the validity of the proposed framework for two biological oscillators and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.

摘要

时滞诱发的极限环振荡在各种系统中广泛存在,但针对它们的系统相减理论尚未得到发展。在这里,我们提出了一个实用的理论框架,用于计算具有无限维相空间的时滞诱导极限环的相位响应函数 Z(θ),这是该理论的一个基本量。我们表明,Z(θ)可以作为与延迟微分方程的适当双线性形式相关联的伴随方程的零本征函数来获得。我们通过两个生物振荡器验证了所提出框架的有效性,并表明所得到的相方程预测了引人入胜的多模态锁定行为。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验