Suppr超能文献

STM4467 编码的精氨酸脱亚氨酶的表达受 STM4463 调控子的控制,有助于沙门氏菌肠炎血清型 Typhimurium 的毒力。

Expression of STM4467-encoded arginine deiminase controlled by the STM4463 regulator contributes to Salmonella enterica serovar Typhimurium virulence.

机构信息

Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, and Center for Agricultural Biomaterials, Seoul National University, Seoul, South Korea.

出版信息

Infect Immun. 2012 Dec;80(12):4291-7. doi: 10.1128/IAI.00880-12. Epub 2012 Sep 24.

Abstract

Arginine deiminase (ADI), carbamate kinase (CK), and ornithine transcarbamoylase (OTC) constitute the ADI system. In addition to metabolic functions, the ADI system has been implicated in the virulence of certain pathogens. The pathogenic intracellular bacterium Salmonella enterica serovar Typhimurium possesses the STM4467, STM4466, and STM4465 genes, which are predicted to encode ADI, CK, and OTC, respectively. Here we report that the STM4467 gene encodes an ADI and that ADI activity plays a role in the successful infection of a mammalian host by S. Typhimurium. An STM4467 deletion mutant was defective for replication inside murine macrophages and was attenuated for virulence in mice. We determined that a regulatory protein encoded by the STM4463 gene functions as an activator for STM4467 expression. The expression of the ADI pathway genes was enhanced inside macrophages in a process that required STM4463. Lack of STM4463 impaired the ability of S. Typhimurium to replicate within macrophages. A mutant defective in STM4467-encoded ADI displayed normal production of nitric oxide by macrophages.

摘要

精氨酸脱亚氨酶(ADI)、氨基甲酰激酶(CK)和鸟氨酸转氨甲酰酶(OTC)构成了 ADI 系统。除了代谢功能外,ADI 系统还与某些病原体的毒力有关。致病性胞内细菌鼠伤寒沙门氏菌拥有 STM4467、STM4466 和 STM4465 基因,分别预测编码 ADI、CK 和 OTC。在这里,我们报告 STM4467 基因编码 ADI,ADI 活性在鼠伤寒沙门氏菌成功感染哺乳动物宿主中发挥作用。STM4467 缺失突变体在鼠巨噬细胞内的复制能力受损,在小鼠中的毒力减弱。我们确定由 STM4463 基因编码的调节蛋白作为 STM4467 表达的激活剂。在巨噬细胞内,ADI 途径基因的表达在需要 STM4463 的过程中增强。缺乏 STM4463 会损害鼠伤寒沙门氏菌在巨噬细胞内复制的能力。在 STM4467 编码的 ADI 缺陷的突变体中,巨噬细胞产生的一氧化氮正常。

相似文献

2
3
The LysR-type transcriptional regulator STM0030 contributes to Salmonella Typhimurium growth in macrophages and virulence in mice.
J Basic Microbiol. 2019 Nov;59(11):1143-1153. doi: 10.1002/jobm.201900315. Epub 2019 Oct 2.
4
QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo.
Infect Immun. 2010 Mar;78(3):914-26. doi: 10.1128/IAI.01038-09. Epub 2009 Dec 22.
7
The transcriptional regulator VarN contributes to Salmonella Typhimurium growth in macrophages and virulence in mice.
Res Microbiol. 2018 May-Jun;169(4-5):214-221. doi: 10.1016/j.resmic.2018.03.003. Epub 2018 May 8.
8
Role of the two-component regulator CpxAR in the virulence of Salmonella enterica serotype Typhimurium.
Infect Immun. 2004 Aug;72(8):4654-61. doi: 10.1128/IAI.72.8.4654-4661.2004.
9
Type VI secretion system-associated gene clusters contribute to pathogenesis of Salmonella enterica serovar Typhimurium.
Infect Immun. 2012 Jun;80(6):1996-2007. doi: 10.1128/IAI.06205-11. Epub 2012 Apr 9.

引用本文的文献

1
The ArgR-Regulated ADI Pathway Facilitates the Survival of under Acidic Conditions.
Int J Mol Sci. 2024 May 23;25(11):5679. doi: 10.3390/ijms25115679.
2
Characterizing arginine, ornithine, and putrescine pathways in enteric pathobionts.
Microbiologyopen. 2024 Apr;13(2):e1408. doi: 10.1002/mbo3.1408.
3
Resisting death by metal: metabolism and Cu/Zn homeostasis in bacteria.
Emerg Top Life Sci. 2024 Feb 22;8(1):45-56. doi: 10.1042/ETLS20230115.
4
Streptococcal arginine deiminase system defences macrophage bactericidal effect mediated by XRE family protein XtrSs.
Virulence. 2024 Dec;15(1):2306719. doi: 10.1080/21505594.2024.2306719. Epub 2024 Feb 2.
5
Beyond protein synthesis: the emerging role of arginine in poultry nutrition and host-microbe interactions.
Front Physiol. 2024 Jan 3;14:1326809. doi: 10.3389/fphys.2023.1326809. eCollection 2023.
6
L-arginine metabolism as pivotal interface of mutual host-microbe interactions in the gut.
Gut Microbes. 2023 Jan-Dec;15(1):2222961. doi: 10.1080/19490976.2023.2222961.
7
Arginine Metabolism Powers Salmonella Resistance to Oxidative Stress.
Infect Immun. 2023 Jun 15;91(6):e0012023. doi: 10.1128/iai.00120-23. Epub 2023 May 16.
9
Raspberry Ketone-Mediated Inhibition of Biofilm Formation in Typhimurium-An Assessment of the Mechanisms of Action.
Antibiotics (Basel). 2023 Jan 23;12(2):239. doi: 10.3390/antibiotics12020239.
10

本文引用的文献

1
Nitric oxide and salmonella pathogenesis.
Front Microbiol. 2011 Apr 20;2:84. doi: 10.3389/fmicb.2011.00084. eCollection 2011.
2
Salmonella pathogenicity island 2 expression negatively controlled by EIIANtr-SsrB interaction is required for Salmonella virulence.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20506-11. doi: 10.1073/pnas.1000759107. Epub 2010 Nov 8.
3
Antimicrobial mechanisms of phagocytes and bacterial evasion strategies.
Nat Rev Microbiol. 2009 May;7(5):355-66. doi: 10.1038/nrmicro2128.
5
The proteome of Salmonella Typhimurium grown under in vivo-mimicking conditions.
Proteomics. 2009 Feb;9(3):565-79. doi: 10.1002/pmic.200700476.
7
RosE represses Std fimbrial expression in Salmonella enterica serotype Typhimurium.
Mol Microbiol. 2008 May;68(3):573-87. doi: 10.1111/j.1365-2958.2008.06185.x. Epub 2008 Mar 4.
8
Salmonellae interplay with host cells.
Nat Rev Microbiol. 2008 Jan;6(1):53-66. doi: 10.1038/nrmicro1788.
9
Mlc regulation of Salmonella pathogenicity island I gene expression via hilE repression.
Nucleic Acids Res. 2007;35(6):1822-32. doi: 10.1093/nar/gkm060. Epub 2007 Feb 28.
10
Fis is required for proper regulation of ssaG expression in Salmonella enterica serovar Typhimurium.
Microb Pathog. 2006 Jul;41(1):33-42. doi: 10.1016/j.micpath.2006.03.005. Epub 2006 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验