Suppr超能文献

气候引起的底栖和顶极过程的变化独立地改变了海洋生态系统。

Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem.

机构信息

J. F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner Str. 28, 37073 Göttingen, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2962-70. doi: 10.1098/rstb.2012.0237.

Abstract

Climate change has complex structural impacts on coastal ecosystems. Global warming is linked to a widespread decline in body size, whereas increased flood frequency can amplify nutrient enrichment through enhanced run-off. Altered population body-size structure represents a disruption in top-down control, whereas eutrophication embodies a change in bottom-up forcing. These processes are typically studied in isolation and little is known about their potential interactive effects. Here, we present the results of an in situ experiment examining the combined effects of top-down and bottom-up forces on the structure of a coastal marine community. Reduced average body mass of the top predator (the shore crab, Carcinus maenas) and nutrient enrichment combined additively to alter mean community body mass. Nutrient enrichment increased species richness and overall density of organisms. Reduced top-predator body mass increased community biomass. Additionally, we found evidence for an allometrically induced trophic cascade. Here, the reduction in top-predator body mass enabled greater biomass of intermediate fish predators within the mesocosms. This, in turn, suppressed key micrograzers, which led to an overall increase in microalgal biomass. This response highlights the possibility for climate-induced trophic cascades, driven by altered size structure of populations, rather than species extinction.

摘要

气候变化对沿海生态系统具有复杂的结构影响。全球变暖与生物体型普遍缩小有关,而洪水频率的增加会通过增强径流使营养物质富集。种群体型结构的改变代表了自上而下控制的中断,而富营养化则体现了自下而上的强迫变化。这些过程通常是孤立地进行研究的,对于它们潜在的相互作用知之甚少。在这里,我们介绍了一项现场实验的结果,该实验研究了自上而下和自下而上的力量对沿海海洋群落结构的综合影响。顶级捕食者(滨蟹,Carcinus maenas)的平均体质量减少和营养物质富集的结合,对群落的平均体质量产生了累加性的影响。营养物质的富集增加了物种丰富度和生物总量。顶级捕食者体质量的减少增加了群落的生物量。此外,我们还发现了存在由变异性引起的营养级联的证据。在这里,顶级捕食者体质量的减少使中间鱼类捕食者在实验室内的生物量增加。这反过来又抑制了关键的微型食草动物,从而导致微藻生物量的整体增加。这种反应凸显了由种群大小结构改变驱动的、受气候影响的营养级联的可能性,而不是物种灭绝。

相似文献

1
Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2962-70. doi: 10.1098/rstb.2012.0237.
2
Size-balanced community reorganization in response to nutrients and warming.
Glob Chang Biol. 2015 Nov;21(11):3971-81. doi: 10.1111/gcb.13019. Epub 2015 Sep 1.
3
Spatial and body-size dependent response of marine pelagic communities to projected global climate change.
Glob Chang Biol. 2015 Jan;21(1):154-64. doi: 10.1111/gcb.12679. Epub 2014 Aug 19.
4
The ecological impacts of multiple environmental stressors on coastal biofilm bacteria.
Glob Chang Biol. 2021 Jul;27(13):3166-3178. doi: 10.1111/gcb.15626. Epub 2021 May 4.
5
Interaction between top-down and bottom-up control in marine food webs.
Proc Natl Acad Sci U S A. 2017 Feb 21;114(8):1952-1957. doi: 10.1073/pnas.1621037114. Epub 2017 Feb 6.
6
Novel crab predator causes marine ecosystem regime shift.
Sci Rep. 2018 Apr 12;8(1):4956. doi: 10.1038/s41598-018-23282-w.
8
Ecosystem dynamics and hypoxia control in the East China Sea: A bottom-up and top-down perspective.
Sci Total Environ. 2024 Mar 25;918:170729. doi: 10.1016/j.scitotenv.2024.170729. Epub 2024 Feb 5.
9
Warming and top predator loss drive direct and indirect effects on multiple trophic groups within and across ecosystems.
J Anim Ecol. 2022 Feb;91(2):428-442. doi: 10.1111/1365-2656.13640. Epub 2021 Dec 1.
10
Bottom-up and top-down effects of browning and warming on shallow lake food webs.
Glob Chang Biol. 2019 Feb;25(2):504-521. doi: 10.1111/gcb.14521. Epub 2018 Dec 14.

引用本文的文献

1
Investigating long-term trophic stability in North Atlantic cod () through nitrogen stable isotope analysis of amino acids.
Philos Trans R Soc Lond B Biol Sci. 2025 Jul 10;380(1930):20240028. doi: 10.1098/rstb.2024.0028.
2
Population characteristics and predation rates of the dominant soft-bodied and durophagous predators on temperate intertidal shores.
R Soc Open Sci. 2024 Jun 19;11(6):240308. doi: 10.1098/rsos.240308. eCollection 2024 Jun.
3
Spatial food webs in the Barents Sea: atlantification and the reorganization of the trophic structure.
Philos Trans R Soc Lond B Biol Sci. 2024 Sep 9;379(1909):20230164. doi: 10.1098/rstb.2023.0164. Epub 2024 Jul 22.
4
Meiofauna at a tropical sandy beach in the SW Atlantic: the influence of seasonality on diversity.
PeerJ. 2024 Jul 12;12:e17727. doi: 10.7717/peerj.17727. eCollection 2024.
8
Temporal and spatial changes in benthic invertebrate trophic networks along a taxonomic richness gradient.
Ecol Evol. 2022 Jun 5;12(6):e8975. doi: 10.1002/ece3.8975. eCollection 2022 Jul.
9
Foundational biodiversity effects propagate through coastal food webs via multiple pathways.
Ecology. 2022 Nov;103(11):e3796. doi: 10.1002/ecy.3796. Epub 2022 Jul 27.
10
Phage strategies facilitate bacterial coexistence under environmental variability.
PeerJ. 2021 Nov 4;9:e12194. doi: 10.7717/peerj.12194. eCollection 2021.

本文引用的文献

1
Warming shifts top-down and bottom-up control of pond food web structure and function.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):3008-17. doi: 10.1098/rstb.2012.0243.
2
Idiosyncratic species effects confound size-based predictions of responses to climate change.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2971-8. doi: 10.1098/rstb.2012.0244.
3
The dynamics of food chains under climate change and nutrient enrichment.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2935-44. doi: 10.1098/rstb.2012.0230.
4
Universal temperature and body-mass scaling of feeding rates.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2923-34. doi: 10.1098/rstb.2012.0242.
5
Climate change in size-structured ecosystems.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2903-12. doi: 10.1098/rstb.2012.0232.
6
Multiple anthropogenic stressors and the structural properties of food webs.
Ecology. 2012 Mar;93(3):441-8. doi: 10.1890/11-0982.1.
7
Body mass constraints on feeding rates determine the consequences of predator loss.
Ecol Lett. 2012 May;15(5):436-43. doi: 10.1111/j.1461-0248.2012.01750.x. Epub 2012 Mar 2.
8
Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates.
Ecol Lett. 2011 Oct;14(10):993-1000. doi: 10.1111/j.1461-0248.2011.01660.x. Epub 2011 Jul 27.
9
Declining body size: a third universal response to warming?
Trends Ecol Evol. 2011 Jun;26(6):285-91. doi: 10.1016/j.tree.2011.03.005. Epub 2011 Apr 4.
10
Stepping in Elton's footprints: a general scaling model for body masses and trophic levels across ecosystems.
Ecol Lett. 2011 Feb;14(2):169-78. doi: 10.1111/j.1461-0248.2010.01568.x. Epub 2010 Dec 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验