Suppr超能文献

摄食率的通用温度和体重标度。

Universal temperature and body-mass scaling of feeding rates.

机构信息

J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner Strasse 28, 37073 Göttingen, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2923-34. doi: 10.1098/rstb.2012.0242.

Abstract

Knowledge of feeding rates is the basis to understand interaction strength and subsequently the stability of ecosystems and biodiversity. Feeding rates, as all biological rates, depend on consumer and resource body masses and environmental temperature. Despite five decades of research on functional responses as quantitative models of feeding rates, a unifying framework of how they scale with body masses and temperature is still lacking. This is perplexing, considering that the strength of functional responses (i.e. interaction strengths) is crucially important for the stability of simple consumer-resource systems and the persistence, sustainability and biodiversity of complex communities. Here, we present the largest currently available database on functional response parameters and their scaling with body mass and temperature. Moreover, these data are integrated across ecosystems and metabolic types of species. Surprisingly, we found general temperature dependencies that differed from the Arrhenius terms predicted by metabolic models. Additionally, the body-mass-scaling relationships were more complex than expected and differed across ecosystems and metabolic types. At local scales (taxonomically narrow groups of consumer-resource pairs), we found hump-shaped deviations from the temperature and body-mass-scaling relationships. Despite the complexity of our results, these body-mass- and temperature-scaling models remain useful as a mechanistic basis for predicting the consequences of warming for interaction strengths, population dynamics and network stability across communities differing in their size structure.

摘要

对摄食率的了解是理解相互作用强度以及生态系统和生物多样性稳定性的基础。摄食率与所有生物率一样,取决于消费者和资源的体重以及环境温度。尽管对功能反应(作为摄食率的定量模型)进行了五十年的研究,但它们与体重和温度的缩放比例仍然缺乏统一的框架。这令人困惑,因为功能反应的强度(即相互作用强度)对于简单的消费者-资源系统的稳定性以及复杂群落的持久性、可持续性和生物多样性至关重要。在这里,我们提供了目前关于功能反应参数及其与体重和温度的缩放关系的最大数据库。此外,这些数据是跨生态系统和物种代谢类型整合的。令人惊讶的是,我们发现了与代谢模型预测的阿累尼乌斯项不同的一般温度依赖性。此外,体重缩放关系比预期的更复杂,并且在不同的生态系统和代谢类型之间存在差异。在局部尺度(消费者-资源对的分类狭窄组)上,我们发现偏离温度和体重缩放关系的驼峰形状偏差。尽管我们的结果很复杂,但这些体重和温度缩放模型仍然可以作为预测变暖对不同大小结构群落的相互作用强度、种群动态和网络稳定性的影响的机制基础。

相似文献

1
Universal temperature and body-mass scaling of feeding rates.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2923-34. doi: 10.1098/rstb.2012.0242.
2
Climate change in size-structured ecosystems.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2903-12. doi: 10.1098/rstb.2012.0232.
3
Allometric functional response model: body masses constrain interaction strengths.
J Anim Ecol. 2010 Jan;79(1):249-56. doi: 10.1111/j.1365-2656.2009.01622.x. Epub 2009 Oct 20.
4
The top-down mechanism for body-mass-abundance scaling.
Ecology. 2008 Feb;89(2):567-80. doi: 10.1890/07-0124.1.
5
On the context-dependent scaling of consumer feeding rates.
Ecol Lett. 2016 Jun;19(6):668-78. doi: 10.1111/ele.12605. Epub 2016 Apr 20.
6
Body masses, functional responses and predator-prey stability.
Ecol Lett. 2013 Sep;16(9):1126-34. doi: 10.1111/ele.12147. Epub 2013 Jul 3.
7
Dimensionality of consumer search space drives trophic interaction strengths.
Nature. 2012 Jun 28;486(7404):485-9. doi: 10.1038/nature11131.
8
Functional responses are maximized at intermediate temperatures.
Ecology. 2020 Apr;101(4):e02975. doi: 10.1002/ecy.2975. Epub 2020 Feb 7.
9
Scaling of basal metabolic rate with body mass and temperature in mammals.
J Anim Ecol. 2010 May;79(3):610-9. doi: 10.1111/j.1365-2656.2010.01672.x. Epub 2010 Feb 18.
10
Temperature dependence of trophic interactions are driven by asymmetry of species responses and foraging strategy.
J Anim Ecol. 2014 Jan;83(1):70-84. doi: 10.1111/1365-2656.12081. Epub 2013 May 21.

引用本文的文献

1
Simple, Universal Rules Predict Trophic Interaction Strengths.
Ecol Lett. 2025 May;28(5):e70126. doi: 10.1111/ele.70126.
3
Trade-offs between defense and competitive traits in a planktonic predator-prey system.
Ecology. 2024 Dec;105(12):e4456. doi: 10.1002/ecy.4456. Epub 2024 Oct 28.
4
A global assessment of large terrestrial carnivore kill rates.
Biol Rev Camb Philos Soc. 2025 Feb;100(1):327-350. doi: 10.1111/brv.13143. Epub 2024 Sep 11.
5
Ecological consequences of body size reduction under warming.
Proc Biol Sci. 2024 Aug;291(2029):20241250. doi: 10.1098/rspb.2024.1250. Epub 2024 Aug 21.
6
Multi-decadal warming alters predator's effect on prey community composition.
Proc Biol Sci. 2024 Aug;291(2028):20240511. doi: 10.1098/rspb.2024.0511. Epub 2024 Aug 7.
8
Metabolic plasticity drives mismatches in physiological traits between prey and predator.
Commun Biol. 2024 May 28;7(1):653. doi: 10.1038/s42003-024-06350-y.
10
Temperature and predators as interactive drivers of community properties.
Ecol Evol. 2023 Oct 31;13(11):e10665. doi: 10.1002/ece3.10665. eCollection 2023 Nov.

本文引用的文献

1
Size-dependent foraging efficiency, cannibalism and zooplankton community structure.
Oecologia. 2000 Apr;123(1):138-148. doi: 10.1007/s004420050999.
2
Warming shifts top-down and bottom-up control of pond food web structure and function.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):3008-17. doi: 10.1098/rstb.2012.0243.
3
Linking community size structure and ecosystem functioning using metabolic theory.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2998-3007. doi: 10.1098/rstb.2012.0246.
4
Idiosyncratic species effects confound size-based predictions of responses to climate change.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2971-8. doi: 10.1098/rstb.2012.0244.
5
Climate-induced changes in bottom-up and top-down processes independently alter a marine ecosystem.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2962-70. doi: 10.1098/rstb.2012.0237.
6
The dynamics of food chains under climate change and nutrient enrichment.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2935-44. doi: 10.1098/rstb.2012.0230.
7
Novel communities from climate change.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2913-22. doi: 10.1098/rstb.2012.0238.
8
Climate change in size-structured ecosystems.
Philos Trans R Soc Lond B Biol Sci. 2012 Nov 5;367(1605):2903-12. doi: 10.1098/rstb.2012.0232.
9
Body mass constraints on feeding rates determine the consequences of predator loss.
Ecol Lett. 2012 May;15(5):436-43. doi: 10.1111/j.1461-0248.2012.01750.x. Epub 2012 Mar 2.
10
More than a meal… integrating non-feeding interactions into food webs.
Ecol Lett. 2012 Apr;15(4):291-300. doi: 10.1111/j.1461-0248.2011.01732.x. Epub 2012 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验