Suppr超能文献

访问、使用和创建用于计算毒理学建模的化学性质数据库。

Accessing, using, and creating chemical property databases for computational toxicology modeling.

作者信息

Williams Antony J, Ekins Sean, Spjuth Ola, Willighagen Egon L

机构信息

Royal Society of Chemistry, Wake Forest, NC, USA.

出版信息

Methods Mol Biol. 2012;929:221-41. doi: 10.1007/978-1-62703-050-2_10.

Abstract

Toxicity data is expensive to generate, is increasingly seen as precompetitive, and is frequently used for the generation of computational models in a discipline known as computational toxicology. Repositories of chemical property data are valuable for supporting computational toxicologists by providing access to data regarding potential toxicity issues with compounds as well as for the purpose of building structure-toxicity relationships and associated prediction models. These relationships use mathematical, statistical, and modeling computational approaches and can be used to understand the mechanisms by which chemicals cause harm and, ultimately, enable prediction of adverse effects of these chemicals to human health and/or the environment. Such approaches are of value as they offer an opportunity to prioritize chemicals for testing. An increasing amount of data used by computational toxicologists is being published into the public domain and, in parallel, there is a greater availability of Open Source software for the generation of computational models. This chapter provides an overview of the types of data and software available and how these may be used to produce predictive toxicology models for the community.

摘要

毒性数据的生成成本高昂,越来越被视为具有竞争前性质,并且经常用于一个名为计算毒理学的学科中计算模型的生成。化学性质数据存储库对于支持计算毒理学家很有价值,它提供了有关化合物潜在毒性问题的数据访问,同时也用于建立结构-毒性关系及相关预测模型。这些关系使用数学、统计和建模计算方法,可用于理解化学物质造成危害的机制,并最终预测这些化学物质对人类健康和/或环境的不利影响。此类方法很有价值,因为它们提供了一个对化学物质进行测试优先级排序的机会。计算毒理学家使用的越来越多的数据已被公开,与此同时,用于生成计算模型的开源软件也越来越多。本章概述了可用的数据和软件类型,以及如何使用这些数据和软件为该领域生成预测毒理学模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验