Department of Neurology, University of Kiel, Schittenhelmstrasse 10, 24105, Kiel, Germany.
Exp Brain Res. 2012 Dec;223(4):489-504. doi: 10.1007/s00221-012-3276-4. Epub 2012 Sep 25.
The cortical control of bimanual and unimanual movements involves complex facilitatory and inhibitory interhemispheric interactions. We analysed the part of the cortical network directly related to the motor output by corticomuscular (64 channel EEG-EMG) and cortico-cortical (EEG-EEG) coherence and delays at the frequency of a voluntarily maintained unimanual and bimanual rhythm and in the 15-30-Hz band during isometric contractions. Voluntary rhythms of each hand showed coherence with lateral cortical areas in both hemispheres and occasionally in the frontal midline region (60-80 % of the recordings and 10-30 %, respectively). They were always coherent between both hands, and this coherence was positively correlated with the interhemispheric coherence (p < 0.01). Unilateral movements were represented mainly in the contralateral cortex (60-80 vs. 10-30 % ipsilateral, p < 0.01). Ipsilateral coherence was more common in left-hand movements, paralleled by more left-right muscle coherence. Partial corticomuscular coherence most often disappeared (p < 0.05) when the contralateral cortex was the predictor, indicating a mainly indirect connection of ipsilateral/frontomesial representations with the muscle via contralateral cortex. Interhemispheric delays had a bimodal distribution (1-10 and 15-30 ms) indicating direct and subcortical routes. Corticomuscular delays (mainly 12-25 ms) indicated fast corticospinal projections and musculocortical feedback. The 15-30-Hz corticomuscular coherence during isometric contractions (60-70 % of recordings) was strictly contralaterally represented without any peripheral left-right coherence. Thus, bilateral cortical areas generate voluntary unimanual and bimanual rhythmic movements. Interhemispheric interactions as detected by EEG-EEG coherence contribute to bimanual synchronization. This is distinct from the unilateral cortical representation of the 15-30-Hz motor rhythm during isometric movements.
双手和单手运动的皮质控制涉及复杂的促进和抑制的大脑两半球间相互作用。我们通过肌电(64 通道 EEG-EMG)和皮质-皮质(EEG-EEG)相干性以及在等长收缩期间自愿维持的单手和双手节律的频率和 15-30-Hz 频带中的延迟来分析与运动输出直接相关的皮质网络的一部分。双手的自愿节律与两个半球的外侧皮质区以及偶尔的额中线区域具有相干性(分别为 60-80%和 10-30%的记录)。它们始终在双手之间相干,并且这种相干性与大脑两半球间相干性呈正相关(p<0.01)。单侧运动主要在对侧皮质区(60-80 比 10-30%同侧,p<0.01)。同侧相干性在左手运动中更为常见,这与左右肌肉相干性的增加相平行。当对侧皮质为预测器时,部分皮质肌相干性最常消失(p<0.05),表明同侧/额中线代表物主要通过对侧皮质与肌肉间接连接。大脑两半球间延迟具有双峰分布(1-10 和 15-30 ms),表明存在直接和皮质下途径。皮质肌延迟(主要为 12-25 ms)表明快速皮质脊髓投射和肌皮质反馈。在等长收缩期间(60-70%的记录)的 15-30-Hz 皮质肌相干性严格地在对侧代表,没有任何外周的左右相干性。因此,双侧皮质区产生自愿的单手和双手节律性运动。EEG-EEG 相干性检测到的大脑两半球间相互作用有助于双手同步。这与等长运动期间 15-30-Hz 运动节律的单侧皮质代表不同。