Suppr超能文献

STOP-Bang 量表和 Epworth 嗜睡量表预测睡眠诊所中阻塞性睡眠呼吸暂停高危患者的能力。

Predictive abilities of the STOP-Bang and Epworth Sleepiness Scale in identifying sleep clinic patients at high risk for obstructive sleep apnea.

机构信息

College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA.

出版信息

Res Nurs Health. 2013 Feb;36(1):84-94. doi: 10.1002/nur.21512. Epub 2012 Sep 24.

Abstract

This study compared the predictive abilities of the STOP-Bang and Epworth Sleepiness Scale (ESS) for screening sleep clinic patients for obstructive sleep apnea (OSA) and sleep-disordered breathing (SDB). Forty-seven new adult patients without previous diagnoses of OSA or SDB were administered the STOP-Bang and ESS and were assigned to OSA or SDB risk groups based on their scores. STOP-Bang responses were scored with two Body Mass Index cut points of 35 and 30 kg/m(2) (SB35 and SB30). The tools' predictive abilities were determined by comparing patients' predicted OSA and SDB risks to their polysomnographic results. The SB30 correctly identified more patients with OSA and SDB than the ESS alone. The ESS had the highest specificity for OSA and SDB.

摘要

本研究比较了 STOP-Bang 量表和嗜睡量表(Epworth Sleepiness Scale,ESS)在筛查睡眠诊所患者阻塞性睡眠呼吸暂停(obstructive sleep apnea,OSA)和睡眠呼吸紊乱(sleep-disordered breathing,SDB)方面的预测能力。47 名新成年患者既往均无 OSA 或 SDB 诊断,给予 STOP-Bang 量表和 ESS 量表,并根据得分将其分为 OSA 或 SDB 风险组。STOP-Bang 量表评分采用两种身体质量指数(body mass index,BMI)切点,即 35kg/m(2) 和 30kg/m(2)(SB35 和 SB30)。通过比较患者的 OSA 和 SDB 风险预测值与多导睡眠图(polysomnography,PSG)结果,确定了这些工具的预测能力。SB30 比单独使用 ESS 量表更能正确识别出更多的 OSA 和 SDB 患者。ESS 量表对 OSA 和 SDB 的特异性最高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验