Beth Israel Deaconess Medical Center, Boston, MA 02115, United States.
Schizophr Res. 2012 Nov;141(2-3):189-96. doi: 10.1016/j.schres.2012.08.012. Epub 2012 Sep 23.
Accurate prediction of psychosis development in high-risk populations is an important but thus far elusive goal. Of the many diverse etiologic and risk factors identified thus far, few have been combined into prospective multivariate risk ascertainment models. We tested the predictive power of familial, neurobiological, socioenvironmental, cognitive and clinical risk factors through an integrative biopsychosocial model for emerging psychosis in young relatives at familial risk for schizophrenia.
96 young first- and second- degree relatives of schizophrenia probands were followed for an average of 2.38 (SD=0.98) years to examine their trajectory towards psychosis. Iterative structural equation modelling utilizing multiple etiologic and risk factors was employed to estimate their joint contribution to prediction of psychosis development.
The rate of conversion to psychosis over the study period was 12.5%. In the final model, clinical measures of schizotypy were directly predictive of conversion, with early (familial, biological, socioenvironmental) and cognitive risk factors indirectly predictive of psychosis through increased baseline clinical symptomatology. Our model provided an excellent fit to the observed data, with sensitivity of 0.17, specificity of 0.99, positive predictive value of 0.67 and negative predictive value of 0.89.
Integrative modeling of multivariate data from familial, neurobiological, socioenvironmental, cognitive and clinical domains represents a powerful approach to prediction of psychosis development. The high specificity and low sensitivity found using a combination of such variables suggests that their utility may be in confirmatory testing among already selected high-risk individuals, rather than for initial screening. These findings also highlight the importance of data from a broad array of etiologic and risk factors, even within a familial high-risk population. With further refinement and validation, such methods could form key components of early detection, intervention and prevention programs.
准确预测高危人群的精神病发展是一个重要但迄今为止难以实现的目标。迄今为止,已经确定了许多不同的病因和危险因素,但很少有将这些因素结合到前瞻性多变量风险确定模型中。我们通过一个整合的生物心理社会模型来测试精神分裂症家族高危人群中年轻亲属出现精神病的家族、神经生物学、社会环境、认知和临床危险因素的预测能力。
对 96 名精神分裂症患者的一级和二级亲属进行了平均 2.38 年(SD=0.98)的随访,以观察他们的精神病发展轨迹。利用多个病因和危险因素的迭代结构方程模型来估计它们对精神病发展预测的联合贡献。
在研究期间,转换为精神病的比率为 12.5%。在最终模型中,精神分裂症特质的临床测量直接预测了转换,而早期(家族、生物学、社会环境)和认知风险因素则通过增加基线临床症状间接预测了精神病。我们的模型与观察数据拟合得非常好,灵敏度为 0.17,特异性为 0.99,阳性预测值为 0.67,阴性预测值为 0.89。
对来自家族、神经生物学、社会环境、认知和临床领域的多变量数据进行综合建模是预测精神病发展的一种强大方法。使用这种变量组合发现的高特异性和低灵敏度表明,它们的用途可能是在已经选择的高风险个体中进行确认性测试,而不是进行初始筛选。这些发现还强调了即使在家族高危人群中,来自广泛病因和危险因素的数据的重要性。随着进一步的改进和验证,这些方法可以成为早期发现、干预和预防计划的关键组成部分。