Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, USA.
J Acquir Immune Defic Syndr. 2012 Dec 15;61(5):574-80. doi: 10.1097/QAI.0b013e318273762f.
Measuring retention in HIV primary care is complex, as care includes multiple visits scheduled at varying intervals over time. We evaluated 6 commonly used retention measures in predicting viral load (VL) suppression and the correlation among measures.
Clinic-wide patient-level data from 6 academic HIV clinics were used for 12 months preceding implementation of the Centers for Disease Control and Prevention/Health Resources and Services Administration (CDC/HRSA) retention in care intervention. Six retention measures were calculated for each patient based on scheduled primary HIV provider visits: count and dichotomous missed visits, visit adherence, 6-month gap, 4-month visit constancy, and the HRSA HIV/AIDS Bureau (HRSA HAB) retention measure. Spearman correlation coefficients and separate unadjusted logistic regression models compared retention measures with one another and with 12-month VL suppression, respectively. The discriminatory capacity of each measure was assessed with the c-statistic.
Among 10,053 patients, 8235 (82%) had 12-month VL measures, with 6304 (77%) achieving suppression (VL <400 copies/mL). All 6 retention measures were significantly associated (P < 0.0001) with VL suppression (odds ratio; 95% CI, c-statistic): missed visit count (0.73; 0.71 to 0.75, 0.67), missed visit dichotomous (3.2; 2.8 to 3.6, 0.62), visit adherence (3.9; 3.5 to 4.3,0.69), gap (3.0; 2.6 to 3.3, 0.61), visit constancy (2.8; 2.5 to 3.0, 0.63), and HRSA HAB (3.8; 3.3 to 4.4, 0.59). Measures incorporating "no-show" visits were highly correlated (Spearman coefficient = 0.83-0.85), as were measures based solely on kept visits (Spearman coefficient = 0.72-0.77). Correlation coefficients were lower across these 2 groups of measures (range = 0.16-0.57).
Six retention measures displayed a wide range of correlation with one another, yet each measure had significant association and modest discrimination for VL suppression. These data suggest there is no clear gold standard and that selection of a retention measure may be tailored to context.
衡量 HIV 初级保健中的保留率很复杂,因为护理包括在不同时间间隔安排的多次就诊。我们评估了 6 种常用的保留率测量方法,以预测病毒载量(VL)抑制率,并评估这些方法之间的相关性。
在实施疾病预防控制中心/卫生资源与服务管理局(CDC/HRSA)保留护理干预措施之前的 12 个月内,我们使用了 6 个学术性 HIV 诊所的患者级 clinic-wide 数据。根据计划的主要 HIV 提供者就诊情况,为每位患者计算了 6 种保留率测量方法:就诊次数和二分类漏诊次数、就诊依从性、6 个月间隔、4 个月就诊稳定性和 HRSA HIV/AIDS 局(HRSA HAB)保留率测量方法。Spearman 相关系数和单独的未调整 logistic 回归模型分别比较了保留率测量方法之间以及与 12 个月 VL 抑制率之间的相关性。通过 c 统计量评估了每种方法的判别能力。
在 10053 名患者中,有 8235 名(82%)患者有 12 个月的 VL 检测值,其中有 6304 名(77%)患者达到了抑制水平(VL < 400 拷贝/ml)。所有 6 种保留率测量方法均与 VL 抑制率显著相关(P < 0.0001)(比值比;95%置信区间,c 统计量):漏诊次数(0.73;0.71 至 0.75,0.67),漏诊二分类(3.2;2.8 至 3.6,0.62),就诊依从性(3.9;3.5 至 4.3,0.69),间隔(3.0;2.6 至 3.3,0.61),就诊稳定性(2.8;2.5 至 3.0,0.63)和 HRSA HAB(3.8;3.3 至 4.4,0.59)。包含“未就诊”就诊次数的测量方法高度相关(Spearman 系数=0.83-0.85),仅基于保留就诊次数的测量方法也高度相关(Spearman 系数=0.72-0.77)。这两组测量方法之间的相关系数较低(范围=0.16-0.57)。
6 种保留率测量方法之间存在广泛的相关性,但每种方法与 VL 抑制率均有显著相关性和适度的判别能力。这些数据表明,不存在明确的黄金标准,并且可以根据具体情况选择保留率测量方法。