Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA.
Nano Lett. 2012 Nov 14;12(11):5769-74. doi: 10.1021/nl303086r. Epub 2012 Oct 3.
Plasmonic lasers exploit strong electromagnetic field confinement at dimensions well below the diffraction limit. However, lasing from an electromagnetic hot spot supported by discrete, coupled metal nanoparticles (NPs) has not been explicitly demonstrated to date. We present a new design for a room-temperature nanolaser based on three-dimensional (3D) Au bowtie NPs supported by an organic gain material. The extreme field compression, and thus ultrasmall mode volume, within the bowtie gaps produced laser oscillations at the localized plasmon resonance gap mode of the 3D bowties. Transient absorption measurements confirmed ultrafast resonant energy transfer between photoexcited dye molecules and gap plasmons on the picosecond time scale. These plasmonic nanolasers are anticipated to be readily integrated into Si-based photonic devices, all-optical circuits, and nanoscale biosensors.
等离子体激光器利用远小于衍射极限的尺寸实现强电磁场的限制。然而,目前尚未明确证明由离散耦合金属纳米粒子(NPs)支持的电磁热点产生激光。我们提出了一种基于三维(3D)Au 蝶形 NP 支撑的有机增益材料的室温纳米激光器的新设计。蝶形间隙内的极端场压缩,从而产生了超小模式体积,导致在 3D 蝶形的局部等离子体共振间隙模式中产生激光振荡。瞬态吸收测量证实了在皮秒时间尺度上光激发染料分子和间隙等离子体之间超快共振能量转移。这些等离子体纳米激光器有望很容易地集成到基于 Si 的光子器件、全光电路和纳米尺度生物传感器中。