Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA.
Nat Nanotechnol. 2013 Jul;8(7):506-11. doi: 10.1038/nnano.2013.99. Epub 2013 Jun 16.
Periodic dielectric structures are typically integrated with a planar waveguide to create photonic band-edge modes for feedback in one-dimensional distributed feedback lasers and two-dimensional photonic-crystal lasers. Although photonic band-edge lasers are widely used in optics and biological applications, drawbacks include low modulation speeds and diffraction-limited mode confinement. In contrast, plasmonic nanolasers can support ultrafast dynamics and ultrasmall mode volumes. However, because of the large momentum mismatch between their nanolocalized lasing fields and free-space light, they suffer from large radiative losses and lack beam directionality. Here, we report lasing action from band-edge lattice plasmons in arrays of plasmonic nanocavities in a homogeneous dielectric environment. We find that optically pumped, two-dimensional arrays of plasmonic Au or Ag nanoparticles surrounded by an organic gain medium show directional beam emission (divergence angle <1.5° and linewidth <1.3 nm) characteristic of lasing action in the far-field, and behave as arrays of nanoscale light sources in the near-field. Using a semi-quantum electromagnetic approach to simulate the active optical responses, we show that lasing is achieved through stimulated energy transfer from the gain to the band-edge lattice plasmons in the deep subwavelength vicinity of the individual nanoparticles. Using femtosecond-transient absorption spectroscopy, we verified that lattice plasmons in plasmonic nanoparticle arrays could reach a 200-fold enhancement of the spontaneous emission rate of the dye because of their large local density of optical states.
周期性介电结构通常与平面波导集成,以在一维分布式反馈激光器和二维光子晶体激光器中创建光子带边缘模式以进行反馈。尽管光子带边缘激光器在光学和生物应用中得到了广泛应用,但缺点包括调制速度低和衍射受限的模式限制。相比之下,等离子体纳米激光器可以支持超快动力学和超小模式体积。然而,由于它们的纳米局部激光场与自由空间光之间的大动量失配,它们会遭受大的辐射损耗并且缺乏光束方向性。在这里,我们报告了在均匀介电环境中的等离子体纳米腔阵列中的带边缘晶格等离子体的激光作用。我们发现,用光泵浦的二维等离子体 Au 或 Ag 纳米粒子阵列,周围是有机增益介质,表现出定向光束发射(发散角<1.5°,线宽<1.3nm),这是远场激光作用的特征,并且在近场中表现为纳米级光源阵列。使用半量子电磁方法来模拟有源光学响应,我们表明,通过从增益到单个纳米粒子附近的深亚波长的带边缘晶格等离子体的受激发射能量转移来实现激光。使用飞秒瞬态吸收光谱,我们验证了由于其大的局部光态密度,等离子体纳米粒子阵列中的晶格等离子体可以将染料的自发发射速率提高 200 倍。