Department of Bioinformatics and Computational Biology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
Bioinformatics. 2012 Nov 15;28(22):2861-9. doi: 10.1093/bioinformatics/bts561. Epub 2012 Sep 26.
Identifying genes altered in cancer plays a crucial role in both understanding the mechanism of carcinogenesis and developing novel therapeutics. It is known that there are various mechanisms of regulation that can lead to gene dysfunction, including copy number change, methylation, abnormal expression, mutation and so on. Nowadays, all these types of alterations can be simultaneously interrogated by different types of assays. Although many methods have been proposed to identify altered genes from a single assay, there is no method that can deal with multiple assays accounting for different alteration types systematically.
In this article, we propose a novel method, integration using item response theory (integIRTy), to identify altered genes by using item response theory that allows integrated analysis of multiple high-throughput assays. When applied to a single assay, the proposed method is more robust and reliable than conventional methods such as Student's t-test or the Wilcoxon rank-sum test. When used to integrate multiple assays, integIRTy can identify novel-altered genes that cannot be found by looking at individual assay separately. We applied integIRTy to three public cancer datasets (ovarian carcinoma, breast cancer, glioblastoma) for cross-assay type integration which all show encouraging results.
The R package integIRTy is available at the web site http://bioinformatics.mdanderson.org/main/OOMPA:Overview.
Supplementary data are available at Bioinformatics online.
鉴定癌症中改变的基因在理解致癌机制和开发新疗法方面起着至关重要的作用。已知有多种调节机制可以导致基因功能障碍,包括拷贝数变化、甲基化、异常表达、突变等。如今,所有这些类型的改变都可以通过不同类型的检测来同时检测。虽然已经提出了许多从单一检测中识别改变基因的方法,但没有一种方法可以系统地处理考虑不同改变类型的多种检测。
在本文中,我们提出了一种新的方法,即整合使用项目反应理论(integIRTy),通过允许对多个高通量检测进行综合分析的项目反应理论来识别改变的基因。当应用于单一检测时,与传统方法(如学生 t 检验或 Wilcoxon 秩和检验)相比,所提出的方法更稳健可靠。当用于整合多个检测时,integIRTy 可以识别出通过单独查看各个检测无法找到的新改变基因。我们将 integIRTy 应用于三个公共癌症数据集(卵巢癌、乳腺癌、胶质母细胞瘤)进行跨检测类型整合,所有结果均令人鼓舞。
R 包 integIRTy 可在网站 http://bioinformatics.mdanderson.org/main/OOMPA:Overview 上获得。
补充数据可在生物信息学在线获得。