Suppr超能文献

一种用于多变量纵向数据和参数加速失效时间联合分析的贝叶斯方法。

A Bayesian approach to joint analysis of multivariate longitudinal data and parametric accelerated failure time.

作者信息

Luo Sheng

机构信息

Division of Biostatistics, University of Texas School of Public Health, 1200 Pressler St., Houston, TX 77030, U.S.A.

出版信息

Stat Med. 2014 Feb 20;33(4):580-94. doi: 10.1002/sim.5956. Epub 2013 Sep 6.

Abstract

Impairment caused by Parkinson's disease (PD) is multidimensional (e.g., sensoria, functions, and cognition) and progressive. Its multidimensional nature precludes a single outcome to measure disease progression. Clinical trials of PD use multiple categorical and continuous longitudinal outcomes to assess the treatment effects on overall improvement. A terminal event such as death or dropout can stop the follow-up process. Moreover, the time to the terminal event may be dependent on the multivariate longitudinal measurements. In this article, we consider a joint random-effects model for the correlated outcomes. A multilevel item response theory model is used for the multivariate longitudinal outcomes and a parametric accelerated failure time model is used for the failure time because of the violation of proportional hazard assumption. These two models are linked via random effects. The Bayesian inference via MCMC is implemented in 'BUGS' language. Our proposed method is evaluated by a simulation study and is applied to DATATOP study, a motivating clinical trial to determine if deprenyl slows the progression of PD.

摘要

帕金森病(PD)所导致的损害具有多维度性(如感觉、功能和认知方面)且呈进行性发展。其多维度特性使得无法用单一结果来衡量疾病进展。PD的临床试验采用多种分类和连续的纵向结果来评估治疗对整体改善情况的效果。诸如死亡或退出试验等终末事件会中断随访过程。此外,发生终末事件的时间可能取决于多变量纵向测量结果。在本文中,我们考虑针对相关结果的联合随机效应模型。由于违反了比例风险假设,对于多变量纵向结果使用多级项目反应理论模型,对于失效时间则使用参数化加速失效时间模型。这两个模型通过随机效应相联系。通过马尔可夫链蒙特卡罗(MCMC)进行的贝叶斯推断是用“BUGS”语言实现的。我们所提出的方法通过模拟研究进行评估,并应用于DATATOP研究,这是一项旨在确定丙炔苯丙胺是否能减缓PD进展的具有启发性的临床试验。

相似文献

1
A Bayesian approach to joint analysis of multivariate longitudinal data and parametric accelerated failure time.
Stat Med. 2014 Feb 20;33(4):580-94. doi: 10.1002/sim.5956. Epub 2013 Sep 6.
2
Joint modeling of multivariate longitudinal measurements and survival data with applications to Parkinson's disease.
Stat Methods Med Res. 2016 Aug;25(4):1346-58. doi: 10.1177/0962280213480877. Epub 2013 Apr 16.
3
Robust Bayesian inference for multivariate longitudinal data by using normal/independent distributions.
Stat Med. 2013 Sep 30;32(22):3812-28. doi: 10.1002/sim.5778. Epub 2013 Mar 11.
4
Bayesian hierarchical model for multiple repeated measures and survival data: an application to Parkinson's disease.
Stat Med. 2014 Oct 30;33(24):4279-91. doi: 10.1002/sim.6228. Epub 2014 Jun 17.
5
Joint modeling of multiple repeated measures and survival data using multidimensional latent trait linear mixed model.
Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3392-3403. doi: 10.1177/0962280218802300. Epub 2018 Oct 11.
6
Robust Bayesian hierarchical model using normal/independent distributions.
Biom J. 2016 Jul;58(4):831-51. doi: 10.1002/bimj.201400255. Epub 2015 Dec 29.
7
Bayesian multivariate augmented Beta rectangular regression models for patient-reported outcomes and survival data.
Stat Methods Med Res. 2017 Aug;26(4):1684-1699. doi: 10.1177/0962280215586010. Epub 2015 Jun 2.
9
Bayesian multiple imputation for missing multivariate longitudinal data from a Parkinson's disease clinical trial.
Stat Methods Med Res. 2016 Apr;25(2):821-37. doi: 10.1177/0962280212469358. Epub 2012 Dec 12.
10
A general joint model for longitudinal measurements and competing risks survival data with heterogeneous random effects.
Lifetime Data Anal. 2011 Jan;17(1):80-100. doi: 10.1007/s10985-010-9169-6. Epub 2010 Jun 12.

引用本文的文献

1
Joint modelling of longitudinal response and time-to-event data using conditional distributions: a Bayesian perspective.
J Appl Stat. 2021 Mar 9;49(9):2228-2245. doi: 10.1080/02664763.2021.1897971. eCollection 2022.
3
Incorporating longitudinal biomarkers for dynamic risk prediction in the era of big data: A pseudo-observation approach.
Stat Med. 2020 Nov 20;39(26):3685-3699. doi: 10.1002/sim.8687. Epub 2020 Jul 27.
4
Estimating the Evolution of Disease in the Parkinson's Progression Markers Initiative.
Neurodegener Dis. 2018;18(4):173-190. doi: 10.1159/000488780. Epub 2018 Aug 8.
5
Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues.
BMC Med Res Methodol. 2016 Sep 7;16(1):117. doi: 10.1186/s12874-016-0212-5.
6
Bayesian joint ordinal and survival modeling for breast cancer risk assessment.
Stat Med. 2016 Dec 10;35(28):5267-5282. doi: 10.1002/sim.7065. Epub 2016 Aug 14.
7
Joint modeling of longitudinal zero-inflated count and time-to-event data: A Bayesian perspective.
Stat Methods Med Res. 2018 Apr;27(4):1258-1270. doi: 10.1177/0962280216659312. Epub 2016 Jul 26.
9
Bayesian analysis of multi-type recurrent events and dependent termination with nonparametric covariate functions.
Stat Methods Med Res. 2017 Dec;26(6):2869-2884. doi: 10.1177/0962280215613378. Epub 2015 Nov 6.
10
Bayesian multivariate augmented Beta rectangular regression models for patient-reported outcomes and survival data.
Stat Methods Med Res. 2017 Aug;26(4):1684-1699. doi: 10.1177/0962280215586010. Epub 2015 Jun 2.

本文引用的文献

1
Joint modeling of multivariate longitudinal measurements and survival data with applications to Parkinson's disease.
Stat Methods Med Res. 2016 Aug;25(4):1346-58. doi: 10.1177/0962280213480877. Epub 2013 Apr 16.
2
integIRTy: a method to identify genes altered in cancer by accounting for multiple mechanisms of regulation using item response theory.
Bioinformatics. 2012 Nov 15;28(22):2861-9. doi: 10.1093/bioinformatics/bts561. Epub 2012 Sep 26.
3
Joint latent class models for longitudinal and time-to-event data: a review.
Stat Methods Med Res. 2014 Feb;23(1):74-90. doi: 10.1177/0962280212445839. Epub 2012 Apr 19.
5
A review of multivariate longitudinal data analysis.
Stat Methods Med Res. 2011 Aug;20(4):299-330. doi: 10.1177/0962280209340191. Epub 2010 Mar 8.
6
Using global statistical tests in long-term Parkinson's disease clinical trials.
Mov Disord. 2009 Sep 15;24(12):1732-9. doi: 10.1002/mds.22645.
7
A Bayesian semiparametric survival model with longitudinal markers.
Biometrics. 2010 Jun;66(2):435-43. doi: 10.1111/j.1541-0420.2009.01276.x. Epub 2009 Jun 8.
8
Analysis of longitudinal randomized clinical trials using item response models.
Contemp Clin Trials. 2009 Mar;30(2):158-70. doi: 10.1016/j.cct.2008.12.003. Epub 2008 Dec 24.
10
A rank-based sample size method for multiple outcomes in clinical trials.
Stat Med. 2008 Jul 20;27(16):3084-104. doi: 10.1002/sim.3182.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验