Suppr超能文献

一种用于多变量纵向数据和参数加速失效时间联合分析的贝叶斯方法。

A Bayesian approach to joint analysis of multivariate longitudinal data and parametric accelerated failure time.

作者信息

Luo Sheng

机构信息

Division of Biostatistics, University of Texas School of Public Health, 1200 Pressler St., Houston, TX 77030, U.S.A.

出版信息

Stat Med. 2014 Feb 20;33(4):580-94. doi: 10.1002/sim.5956. Epub 2013 Sep 6.

Abstract

Impairment caused by Parkinson's disease (PD) is multidimensional (e.g., sensoria, functions, and cognition) and progressive. Its multidimensional nature precludes a single outcome to measure disease progression. Clinical trials of PD use multiple categorical and continuous longitudinal outcomes to assess the treatment effects on overall improvement. A terminal event such as death or dropout can stop the follow-up process. Moreover, the time to the terminal event may be dependent on the multivariate longitudinal measurements. In this article, we consider a joint random-effects model for the correlated outcomes. A multilevel item response theory model is used for the multivariate longitudinal outcomes and a parametric accelerated failure time model is used for the failure time because of the violation of proportional hazard assumption. These two models are linked via random effects. The Bayesian inference via MCMC is implemented in 'BUGS' language. Our proposed method is evaluated by a simulation study and is applied to DATATOP study, a motivating clinical trial to determine if deprenyl slows the progression of PD.

摘要

帕金森病(PD)所导致的损害具有多维度性(如感觉、功能和认知方面)且呈进行性发展。其多维度特性使得无法用单一结果来衡量疾病进展。PD的临床试验采用多种分类和连续的纵向结果来评估治疗对整体改善情况的效果。诸如死亡或退出试验等终末事件会中断随访过程。此外,发生终末事件的时间可能取决于多变量纵向测量结果。在本文中,我们考虑针对相关结果的联合随机效应模型。由于违反了比例风险假设,对于多变量纵向结果使用多级项目反应理论模型,对于失效时间则使用参数化加速失效时间模型。这两个模型通过随机效应相联系。通过马尔可夫链蒙特卡罗(MCMC)进行的贝叶斯推断是用“BUGS”语言实现的。我们所提出的方法通过模拟研究进行评估,并应用于DATATOP研究,这是一项旨在确定丙炔苯丙胺是否能减缓PD进展的具有启发性的临床试验。

相似文献

引用本文的文献

本文引用的文献

3
Joint latent class models for longitudinal and time-to-event data: a review.纵向和生存数据的联合潜在类别模型:综述。
Stat Methods Med Res. 2014 Feb;23(1):74-90. doi: 10.1177/0962280212445839. Epub 2012 Apr 19.
5
A review of multivariate longitudinal data analysis.多元纵向数据分析综述。
Stat Methods Med Res. 2011 Aug;20(4):299-330. doi: 10.1177/0962280209340191. Epub 2010 Mar 8.
7
A Bayesian semiparametric survival model with longitudinal markers.具有纵向标志物的贝叶斯半参数生存模型。
Biometrics. 2010 Jun;66(2):435-43. doi: 10.1111/j.1541-0420.2009.01276.x. Epub 2009 Jun 8.
8
Analysis of longitudinal randomized clinical trials using item response models.应用项目反应模型分析纵向随机临床试验。
Contemp Clin Trials. 2009 Mar;30(2):158-70. doi: 10.1016/j.cct.2008.12.003. Epub 2008 Dec 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验