Suppr超能文献

细菌反应中心 Q(B)部位半醌与 Ser-L223 之间的氢键:结合光谱和计算的观点。

Hydrogen bonding between the Q(B) site ubisemiquinone and Ser-L223 in the bacterial reaction center: a combined spectroscopic and computational perspective.

机构信息

Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

Biochemistry. 2012 Nov 13;51(45):9086-93. doi: 10.1021/bi300834w. Epub 2012 Oct 30.

Abstract

In the Q(B) site of the Rhodobacter sphaeroides photosynthetic reaction center, the donation of a hydrogen bond from the hydroxyl group of Ser-L223 to the ubisemiquinone formed after the first flash is debatable. In this study, we use a combination of spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations to comprehensively explore this topic. We show that ENDOR, ESEEM, and HYSCORE spectroscopic differences between mutant L223SA and the wild-type sample (WT) are negligible, indicating only minor perturbations in the ubisemiquinone spin density for the mutant sample. Qualitatively, this suggests that a strong hydrogen bond does not exist in the WT between the Ser-L223 hydroxyl group and the semiquinone O(1) atom, as removal of this hydrogen bond in the mutant should cause a significant redistribution of spin density in the semiquinone. We show quantitatively, using QM/MM calculations, that a WT model in which the Ser-L223 hydroxyl group is rotated to prevent hydrogen bond formation with the O(1) atom of the semiquinone predicts negligible change for the L223SA mutant. This, together with the better agreement between key QM/MM calculated and experimental hyperfine couplings for the non-hydrogen-bonded model, leads us to conclude that no strong hydrogen bond is formed between the Ser-L223 hydroxyl group and the semiquinone O(1) atom after the first flash. The implications of this finding for quinone reduction in photosynthetic reaction centers are discussed.

摘要

在球形红杆菌光合反应中心的 Q(B) 位,Ser-L223 的羟基向第一闪光后形成的半醌基团提供氢键的说法存在争议。在这项研究中,我们使用光谱学和量子力学/分子力学(QM/MM)计算的组合来全面探讨这个问题。我们表明,突变体 L223SA 和野生型样品(WT)之间的 ENDOR、ESEEM 和 HYSCORE 光谱差异可以忽略不计,这表明突变体样品中半醌自旋密度的微小扰动。从定性上讲,这表明在 WT 中,Ser-L223 羟基和半醌 O(1)原子之间不存在强氢键,因为在突变体中去除这个氢键应该会导致半醌中自旋密度的显著重新分布。我们使用 QM/MM 计算定量地表明,WT 模型中 Ser-L223 羟基被旋转以防止与半醌的 O(1)原子形成氢键,这对于 L223SA 突变体来说预测几乎没有变化。这一点,加上非氢键模型的关键 QM/MM 计算和实验超精细耦合之间更好的一致性,使我们得出结论,即在第一次闪光后,Ser-L223 羟基和半醌 O(1)原子之间没有形成强氢键。讨论了这一发现对光合反应中心中醌还原的影响。

相似文献

引用本文的文献

1
Colin A. Wraight, 1945-2014.科林·A·赖特,1945 - 2014年。
Photosynth Res. 2016 Feb;127(2):237-56. doi: 10.1007/s11120-015-0174-1. Epub 2015 Jul 23.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验