Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.
Biochemistry. 2012 Nov 13;51(45):9086-93. doi: 10.1021/bi300834w. Epub 2012 Oct 30.
In the Q(B) site of the Rhodobacter sphaeroides photosynthetic reaction center, the donation of a hydrogen bond from the hydroxyl group of Ser-L223 to the ubisemiquinone formed after the first flash is debatable. In this study, we use a combination of spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations to comprehensively explore this topic. We show that ENDOR, ESEEM, and HYSCORE spectroscopic differences between mutant L223SA and the wild-type sample (WT) are negligible, indicating only minor perturbations in the ubisemiquinone spin density for the mutant sample. Qualitatively, this suggests that a strong hydrogen bond does not exist in the WT between the Ser-L223 hydroxyl group and the semiquinone O(1) atom, as removal of this hydrogen bond in the mutant should cause a significant redistribution of spin density in the semiquinone. We show quantitatively, using QM/MM calculations, that a WT model in which the Ser-L223 hydroxyl group is rotated to prevent hydrogen bond formation with the O(1) atom of the semiquinone predicts negligible change for the L223SA mutant. This, together with the better agreement between key QM/MM calculated and experimental hyperfine couplings for the non-hydrogen-bonded model, leads us to conclude that no strong hydrogen bond is formed between the Ser-L223 hydroxyl group and the semiquinone O(1) atom after the first flash. The implications of this finding for quinone reduction in photosynthetic reaction centers are discussed.
在球形红杆菌光合反应中心的 Q(B) 位,Ser-L223 的羟基向第一闪光后形成的半醌基团提供氢键的说法存在争议。在这项研究中,我们使用光谱学和量子力学/分子力学(QM/MM)计算的组合来全面探讨这个问题。我们表明,突变体 L223SA 和野生型样品(WT)之间的 ENDOR、ESEEM 和 HYSCORE 光谱差异可以忽略不计,这表明突变体样品中半醌自旋密度的微小扰动。从定性上讲,这表明在 WT 中,Ser-L223 羟基和半醌 O(1)原子之间不存在强氢键,因为在突变体中去除这个氢键应该会导致半醌中自旋密度的显著重新分布。我们使用 QM/MM 计算定量地表明,WT 模型中 Ser-L223 羟基被旋转以防止与半醌的 O(1)原子形成氢键,这对于 L223SA 突变体来说预测几乎没有变化。这一点,加上非氢键模型的关键 QM/MM 计算和实验超精细耦合之间更好的一致性,使我们得出结论,即在第一次闪光后,Ser-L223 羟基和半醌 O(1)原子之间没有形成强氢键。讨论了这一发现对光合反应中心中醌还原的影响。