Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA.
Proc Natl Acad Sci U S A. 2012 Sep 25;109(39):15734-9. doi: 10.1073/pnas.1208787109. Epub 2012 Sep 10.
Fumarate and nitrate reduction (FNR) regulatory proteins are O(2)-sensing bacterial transcription factors that control the switch between aerobic and anaerobic metabolism. Under anaerobic conditions 4Fe-4S-FNR exists as a DNA-binding homodimer. In response to elevated oxygen levels, the 4Fe-4S cluster undergoes a rapid conversion to a 2Fe-2S cluster, resulting in a dimer-to-monomer transition and loss of site-specific DNA binding. In this work, resonance Raman and UV-visible absorption/CD spectroscopies and MS were used to characterize the interconversion between 4Fe-4S and 2Fe-2S clusters in Escherichia coli FNR. Selective (34)S labeling of the bridging sulfides in the 4Fe-4S cluster-bound form of FNR facilitated identification of resonantly enhanced Cys(32)S-(34)S stretching modes in the resonance Raman spectrum of the O(2)-exposed 2Fe-2S cluster-bound form of FNR. This result indicates O(2)-induced oxidation and retention of bridging sulfides in the form of 2Fe-2S cluster-bound cysteine persulfides. MS also demonstrates that multiple cysteine persulfides are formed on O(2) exposure of 4Fe-4S-FNR. The 4Fe-4S cluster in FNR can also be regenerated from the cysteine persulfide-coordinated 2Fe-2S cluster by anaerobic incubation with DTT and Fe(2+) ion in the absence of exogenous sulfide. Resonance Raman data indicate that this type of cluster conversion involving sulfide oxidation is not unique to FNR, because it also occurs in O(2)-exposed forms of O(2)-sensitive [4Fe-4S] clusters in radical S-adenosylmethionine enzymes. The results provide fresh insight into the molecular mechanism of O(2) sensing by FNR and iron-sulfur cluster conversion reactions in general, and suggest unique mechanisms for the assembly or repair of biological [4Fe-4S] clusters.
延胡索酸盐和硝酸盐还原 (FNR) 调节蛋白是氧感应细菌转录因子,可控制需氧和厌氧代谢之间的转换。在厌氧条件下,4Fe-4S-FNR 以 DNA 结合同源二聚体的形式存在。在氧水平升高时,4Fe-4S簇迅速转化为2Fe-2S簇,导致二聚体到单体的转变和特异性 DNA 结合位点的丧失。在这项工作中,共振拉曼和紫外可见吸收/CD 光谱和 MS 用于表征大肠杆菌 FNR 中4Fe-4S和2Fe-2S簇之间的互变。FNR 中4Fe-4S簇结合形式中桥接硫的选择性(34)S 标记促进了在 O(2)暴露的2Fe-2S簇结合形式的 FNR 的共振拉曼光谱中识别共振增强的 Cys(32)S-(34)S 伸缩模式。这一结果表明,O(2)诱导桥接硫以2Fe-2S簇结合半胱氨酸过硫化物的形式氧化和保留。MS 还表明,在4Fe-4S-FNR 暴露于 O(2)时,形成了多个半胱氨酸过硫化物。FNR 中的4Fe-4S簇也可以通过在无氧条件下用 DTT 和 Fe(2+)离子孵育,从半胱氨酸过硫化物配位的2Fe-2S簇中再生。共振拉曼数据表明,这种涉及硫化物氧化的簇转换类型不仅存在于 FNR 中,也存在于氧敏感[4Fe-4S]簇的 O(2)暴露形式中,这些形式存在于自由基 S-腺苷甲硫氨酸酶中。这些结果为 FNR 的 O(2)感应和铁硫簇转换反应的分子机制提供了新的见解,并为生物[4Fe-4S]簇的组装或修复提供了独特的机制。