Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan.
Antioxid Redox Signal. 2022 Feb;36(4-6):327-336. doi: 10.1089/ars.2021.0170. Epub 2022 Jan 4.
Polysulfide species ( R-S-R', > 2; and R-S-H, > 1) exist in many organisms. The highly nucleophilic nature of hydropersulfides and hydropolysulfides contributes to the potent antioxidant activities of polysulfide species that protect organisms against oxidative and electrophilic stresses. Accumulating evidence suggests that organic polysulfides (R-S-R') readily undergo alkaline hydrolysis, which results in formation of both nucleophilic hydrosulfide/polysulfide (R-SH) and electrophilic sulfenic acid (R'SOH) species. Polysulfides maintain a steady-state equilibrium that is driven by hydrolysis even in aqueous physiological milieus. This unique property makes polysulfide chemistry and biology more complex than previously believed. The hydrolysis equilibrium of polysulfides shifts to the right when electrophiles are present. Strong electrophilic alkylating agents ( monobromobimane) greatly enhance polysulfide hydrolysis, which leads to increased polysulfide degradation and artifactual formation of bis-S-bimane adducts in the absence of free hydrogen sulfide. The finding that hydroxyl group-containing substances such as tyrosine efficiently protected polysulfides from hydrolysis led to development of the new alkylating agent, -iodoacetyl l-tyrosine methyl ester (TME-IAM). TME-IAM efficiently and specifically traps and stabilizes hydropolysulfides and protects polysulfide chains from hydrolysis, and, when used with mass spectrometry, TME-IAM allows speciation of the reactive sulfur metabolome. In addition, the polyethylene glycol-conjugated maleimide-labeling gel shift assay, which relies on unique hydrolysis equilibrium of polysulfides, will be a reliable technique for proteomics of polysulfide-containing proteins. Using precise methodologies to achieve a better understanding of the occurrence and metabolism of polysulfide species is necessary to gain insights into the undefined biology of polysulfide species. 36, 327-336.
多硫化物(R-S-R',>2;和 R-S-H,>1)存在于许多生物体中。氢过硫化物和多硫化物的高亲核性质有助于多硫化物的强大抗氧化活性,保护生物体免受氧化和亲电应激。越来越多的证据表明,有机多硫化物(R-S-R')容易发生碱性水解,导致亲核氢硫化物/多硫化物(R-SH)和亲电亚磺酸(R'SOH)物种的形成。多硫化物在水生理环境中即使处于水解平衡也能保持稳定。这种独特的性质使得多硫化物化学和生物学比以前认为的更为复杂。当存在亲电试剂时,多硫化物的水解平衡向右移动。强亲电烷基化剂(单溴代丁二酰亚胺)极大地促进了多硫化物的水解,导致多硫化物降解增加,并在没有游离硫化氢的情况下形成双-S-丁二酰亚胺加合物的假象。发现含有羟基的物质(如酪氨酸)能有效地保护多硫化物免受水解,这导致了新型烷基化剂碘乙酰胺 l-酪氨酸甲酯(TME-IAM)的发展。TME-IAM 能有效地、特异性地捕获和稳定多硫化物,并保护多硫化物链免受水解,当与质谱联用时,TME-IAM 可以对活性硫代谢物进行分类。此外,依赖于多硫化物独特水解平衡的聚乙二醇偶联马来酰亚胺标记凝胶迁移 assay 将成为一种可靠的含多硫化物蛋白的蛋白质组学技术。使用精确的方法学来更好地理解多硫化物的发生和代谢,对于深入了解多硫化物的未知生物学是必要的。36, 327-336.