Suppr超能文献

一种基于解释方差的新型遗传风险评分,用于疾病风险的预测建模。

A new explained-variance based genetic risk score for predictive modeling of disease risk.

作者信息

Che Ronglin, Motsinger-Reif Alison A

机构信息

North Carolina State University, USA.

出版信息

Stat Appl Genet Mol Biol. 2012 Sep 25;11(4):Article 15. doi: 10.1515/1544-6115.1796.

Abstract

The goal of association mapping is to identify genetic variants that predict disease, and as the field of human genetics matures, the number of successful association studies is increasing. Many such studies have shown that for many diseases, risk is explained by a reasonably large number of variants that each explains a very small amount of disease risk. This is prompting the use of genetic risk scores in building predictive models, where information across several variants is combined for predictive modeling. In the current study, we compare the performance of four previously proposed genetic risk score methods and present a new method for constructing genetic risk score that incorporates explained variance information. The methods compared include: a simple count Genetic Risk Score, an odds ratio weighted Genetic Risk Score, a direct logistic regression Genetic Risk Score, a polygenic Genetic Risk Score, and the new explained variance weighted Genetic Risk Score. We compare the methods using a wide range of simulations in two steps, with a range of the number of deleterious single nucleotide polymorphisms (SNPs) explaining disease risk, genetic modes, baseline penetrances, sample sizes, relative risks (RR) and minor allele frequencies (MAF). Several measures of model performance were compared including overall power, C-statistic and Akaike's Information Criterion. Our results show the relative performance of methods differs significantly, with the new explained variance weighted GRS (EV-GRS) generally performing favorably to the other methods.

摘要

关联图谱的目标是识别能够预测疾病的基因变异,随着人类遗传学领域的成熟,成功的关联研究数量不断增加。许多此类研究表明,对于许多疾病而言,风险是由相当数量的变异所解释的,每个变异对疾病风险的解释量都非常小。这促使在构建预测模型时使用遗传风险评分,即将多个变异的信息结合起来进行预测建模。在当前研究中,我们比较了四种先前提出的遗传风险评分方法的性能,并提出了一种纳入解释方差信息的构建遗传风险评分的新方法。所比较的方法包括:简单计数遗传风险评分、比值比加权遗传风险评分、直接逻辑回归遗传风险评分、多基因遗传风险评分以及新的解释方差加权遗传风险评分。我们分两步使用广泛的模拟对这些方法进行比较,模拟范围包括解释疾病风险的有害单核苷酸多态性(SNP)数量、遗传模式、基线外显率、样本量、相对风险(RR)和次要等位基因频率(MAF)。比较了模型性能的多个指标,包括总体效能、C统计量和赤池信息准则。我们的结果表明,各方法的相对性能存在显著差异,新的解释方差加权遗传风险评分(EV-GRS)通常比其他方法表现更优。

相似文献

9
Assessing thyroid cancer risk using polygenic risk scores.使用多基因风险评分评估甲状腺癌风险。
Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):5997-6002. doi: 10.1073/pnas.1919976117. Epub 2020 Mar 4.

引用本文的文献

4
Methodological challenges in constructing DNA methylation risk scores.构建 DNA 甲基化风险评分面临的方法学挑战。
Epigenetics. 2020 Jan-Feb;15(1-2):1-11. doi: 10.1080/15592294.2019.1644879. Epub 2019 Jul 22.
6
Polygenic risk scores in familial Alzheimer disease.家族性阿尔茨海默病中的多基因风险评分
Neurology. 2017 Mar 21;88(12):1180-1186. doi: 10.1212/WNL.0000000000003734. Epub 2017 Feb 17.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验