Kenney Toby, Gu Hong
Dalhousie University.
Stat Appl Genet Mol Biol. 2012 Sep 25;11(4):Article 14. doi: 10.1515/1544-6115.1779.
We analytically derive the first and second derivatives of the likelihood in maximum likelihood methods for phylogeny. These results enable the Newton-Raphson method to be used for maximising likelihood, which is important because there is a need for faster methods for optimisation of parameters in maximum likelihood methods. Furthermore, the calculation of the Hessian matrix also opens up possibilities for standard likelihood theory to be applied, for inference in phylogeny and for model selection problems. Another application of the Hessian matrix is local influence analysis, which can be used for detecting a number of biologically interesting phenomena. The pruning algorithm has been used to speed up computation of likelihoods for a tree. We explain how it can be used to speed up the computation for the first and second derivatives of the likelihood with respect to branch lengths and other parameters. The results in this paper apply not only to bifurcating trees, but also to general multifurcating trees. We demonstrate the use of our Hessian calculation for the three applications listed above, and compare with existing methods for those applications.
我们通过解析推导了系统发育最大似然法中似然函数的一阶和二阶导数。这些结果使得牛顿 - 拉夫森方法能够用于最大化似然函数,这很重要,因为在最大似然法中需要更快的参数优化方法。此外,海森矩阵的计算也为应用标准似然理论、进行系统发育推断以及解决模型选择问题开辟了可能性。海森矩阵的另一个应用是局部影响分析,它可用于检测许多生物学上有趣的现象。剪枝算法已被用于加速树的似然计算。我们解释了如何用它来加速似然函数关于分支长度和其他参数的一阶和二阶导数的计算。本文的结果不仅适用于二叉树,也适用于一般的多叉树。我们展示了我们的海森矩阵计算在上述三种应用中的使用情况,并与这些应用的现有方法进行了比较。