Fernández-Torre Delia, Carrasco Javier, Ganduglia-Pirovano M Verónica, Pérez Rubén
Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.
CIC Energigune, Albert Einstein 48, 01510 Miñano, Álava, Spain.
J Chem Phys. 2014 Jul 7;141(1):014703. doi: 10.1063/1.4885546.
We present a comprehensive density functional theory+U study of the mechanisms underlying the dissociation of molecular hydrogen, and diffusion and clustering of the resulting atomic species on the CeO2(111) surface. Contrary to a widely held view based solely on a previous theoretical prediction, our results show conclusively that H2 dissociation is an activated process with a large energy barrier ~1.0 eV that is not significantly affected by coverage or the presence of surface oxygen vacancies. The reaction proceeds through a local energy minimum--where the molecule is located close to one of the surface oxygen atoms and the H-H bond has been substantially weaken by the interaction with the substrate--, and a transition state where one H atom is attached to a surface O atom and the other H atom sits on-top of a Ce(4+) ion. In addition, we have explored how several factors, including H coverage, the location of Ce(3+) ions as well as the U value, may affect the chemisorption energy and the relative stability of isolated OH groups versus pair and trimer structures. The trimer stability at low H coverages and the larger upward relaxation of the surface O atoms within the OH groups are consistent with the assignment of the frequent experimental observation by non-contact atomic force and scanning tunneling microscopies of bright protrusions on three neighboring surface O atoms to a triple OH group. The diffusion path of isolated H atoms on the surface goes through the adsorption on-top of an oxygen in the third atomic layer with a large energy barrier of ~1.8 eV. Overall, the large energy barriers for both, molecular dissociation and atomic diffusion, are consistent with the high activity and selectivity found recently in the partial hydrogenation of acetylene catalyzed by ceria at high H2/C2H2 ratios.
我们对分子氢解离、以及由此产生的原子物种在CeO₂(111)表面的扩散和聚集的潜在机制进行了全面的密度泛函理论+U研究。与仅基于先前理论预测的广泛观点相反,我们的结果确凿地表明,H₂解离是一个具有约1.0 eV大能量势垒的活化过程,该能量势垒不受覆盖率或表面氧空位的存在的显著影响。反应通过一个局部能量最小值(分子靠近表面氧原子之一,H-H键通过与底物的相互作用而大幅减弱)和一个过渡态进行,在过渡态中,一个H原子附着在表面O原子上,另一个H原子位于Ce(4+)离子的顶部。此外,我们还研究了几个因素,包括H覆盖率、Ce(3+)离子的位置以及U值,如何影响化学吸附能以及孤立的OH基团相对于成对和三聚体结构的相对稳定性。低H覆盖率下三聚体的稳定性以及OH基团内表面O原子较大的向上弛豫与非接触原子力和扫描隧道显微镜对三个相邻表面O原子上的明亮突起的频繁实验观察结果一致,这些突起被归因于三重OH基团。孤立的H原子在表面上的扩散路径通过吸附在第三原子层中的一个氧原子顶部,能量势垒约为1.8 eV。总体而言,分子解离和原子扩散的大能量势垒与最近在高H₂/C₂H₂比下二氧化铈催化乙炔部分加氢中发现的高活性和选择性一致。