Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA.
IEEE Trans Neural Syst Rehabil Eng. 2013 Jan;21(1):96-103. doi: 10.1109/TNSRE.2012.2218832. Epub 2012 Sep 27.
This study presents a novel myoelectric pattern recognition strategy towards restoration of hand function after incomplete cervical spinal cord Injury (SCI). High density surface electromyogram (EMG) signals comprised of 57 channels were recorded from the forearm of nine subjects with incomplete cervical SCI while they tried to perform six different hand grasp patterns. A series of pattern recognition algorithms with different EMG feature sets and classifiers were implemented to identify the intended tasks of each SCI subject. High average overall accuracies (> 97%) were achieved in classification of seven different classes (six intended hand grasp patterns plus a hand rest pattern), indicating that substantial motor control information can be extracted from partially paralyzed muscles of SCI subjects. Such information can potentially enable volitional control of assistive devices, thereby facilitating restoration of hand function. Furthermore, it was possible to maintain high levels of classification accuracy with a very limited number of electrodes selected from the high density surface EMG recordings. This demonstrates clinical feasibility and robustness in the concept of using myoelectric pattern recognition techniques toward improved function restoration for individuals with spinal injury.
本研究提出了一种新的肌电模式识别策略,旨在恢复不完全性颈脊髓损伤(SCI)后的手部功能。研究中,从 9 位不完全性颈 SCI 患者的前臂记录了包含 57 个通道的高密度表面肌电图(EMG)信号,这些患者在尝试执行六种不同的手抓握模式时进行记录。研究中实施了一系列具有不同 EMG 特征集和分类器的模式识别算法,以识别每位 SCI 患者的预期任务。在对七种不同类别的分类中,平均总体准确率(>97%)均较高(六种预期手抓握模式加上手休息模式),表明可以从 SCI 患者部分瘫痪的肌肉中提取出大量的运动控制信息。这些信息可以潜在地实现辅助设备的自主控制,从而促进手部功能的恢复。此外,仅从高密度表面 EMG 记录中选择非常有限数量的电极,就可以保持较高的分类准确率。这证明了使用肌电模式识别技术来改善脊髓损伤患者功能恢复的概念在临床上具有可行性和稳健性。