Suppr超能文献

使用非线性特征增强肌电模式识别性能。

Myoelectric Pattern Recognition Performance Enhancement Using Nonlinear Features.

机构信息

Department of Electrical and Electronic Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh.

Department of Physics, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh.

出版信息

Comput Intell Neurosci. 2022 Apr 29;2022:6414664. doi: 10.1155/2022/6414664. eCollection 2022.

Abstract

The multichannel electrode array used for electromyogram (EMG) pattern recognition provides good performance, but it has a high cost, is computationally expensive, and is inconvenient to wear. Therefore, researchers try to use as few channels as possible while maintaining improved pattern recognition performance. However, minimizing the number of channels affects the performance due to the least separable margin among the movements possessing weak signal strengths. To meet these challenges, two time-domain features based on nonlinear scaling, the log of the mean absolute value (LMAV) and the nonlinear scaled value (NSV), are proposed. In this study, we validate the proposed features on two datasets, the existing four feature extraction methods, variable window size, and various signal-to-noise ratios (SNR). In addition, we also propose a feature extraction method where the LMAV and NSV are grouped with the existing 11 time-domain features. The proposed feature extraction method enhances accuracy, sensitivity, specificity, precision, and F1 score by 1.00%, 5.01%, 0.55%, 4.71%, and 5.06% for dataset 1, and 1.18%, 5.90%, 0.66%, 5.63%, and 6.04% for dataset 2, respectively. Therefore, the experimental results strongly suggest the proposed feature extraction method, for taking a step forward with regard to improved myoelectric pattern recognition performance.

摘要

用于肌电图 (EMG) 模式识别的多通道电极阵列提供了良好的性能,但成本高、计算量大且佩戴不便。因此,研究人员试图在保持改进的模式识别性能的同时,使用尽可能少的通道。然而,由于具有较弱信号强度的运动之间的最小可分离间隙,最小化通道数量会影响性能。为了应对这些挑战,提出了两种基于非线性缩放的时域特征,即对数均绝对值 (LMAV) 和非线性缩放值 (NSV)。在这项研究中,我们在两个数据集上验证了所提出的特征,即现有的四种特征提取方法、可变窗口大小和各种信噪比 (SNR)。此外,我们还提出了一种特征提取方法,其中 LMAV 和 NSV 与现有的 11 个时域特征组合在一起。所提出的特征提取方法将数据集 1 的准确性、灵敏度、特异性、精度和 F1 评分分别提高了 1.00%、5.01%、0.55%、4.71%和 5.06%,将数据集 2 的准确性、灵敏度、特异性、精度和 F1 评分分别提高了 1.18%、5.90%、0.66%、5.63%和 6.04%。因此,实验结果强烈表明所提出的特征提取方法在提高肌电模式识别性能方面向前迈进了一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0de/9076314/50136f531adf/CIN2022-6414664.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验