Suppr超能文献

基于 Lévy 过程的系统发育分析:在连续性状的演化中寻找跳跃。

Phylogenetic analysis using Lévy processes: finding jumps in the evolution of continuous traits.

机构信息

Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.

出版信息

Syst Biol. 2013 Mar;62(2):193-204. doi: 10.1093/sysbio/sys086. Epub 2012 Oct 3.

Abstract

Gaussian processes, a class of stochastic processes including Brownian motion and the Ornstein-Uhlenbeck process, are widely used to model continuous trait evolution in statistical phylogenetics. Under such processes, observations at the tips of a phylogenetic tree have a multivariate Gaussian distribution, which may lead to suboptimal model specification under certain evolutionary conditions, as supposed in models of punctuated equilibrium or adaptive radiation. To consider non-normally distributed continuous trait evolution, we introduce a method to compute posterior probabilities when modeling continuous trait evolution as a Lévy process. Through data simulation and model testing, we establish that single-rate Brownian motion (BM) and Lévy processes with jumps generate distinct patterns in comparative data. We then analyzed body mass and endocranial volume measurements for 126 primates. We rejected single-rate BM in favor of a Lévy process with jumps for each trait, with the lineage leading to most recent common ancestor of great apes showing particularly strong evidence against single-rate BM.

摘要

高斯过程,一类包括布朗运动和奥恩斯坦-乌伦贝克过程的随机过程,广泛用于统计系统发生学中连续性状进化的建模。在这些过程下,系统发生树的末梢的观测具有多元高斯分布,这可能会导致在某些进化条件下模型规格的次优,如在间断平衡或适应辐射模型中所假设的那样。为了考虑非正态分布的连续性状进化,我们引入了一种方法,用于将连续性状进化建模为莱维过程时计算后验概率。通过数据模拟和模型测试,我们确定单速率布朗运动(BM)和带有跳跃的莱维过程会在比较数据中产生不同的模式。然后,我们分析了 126 种灵长类动物的体重和脑容量测量值。我们拒绝了单速率 BM,而支持每个性状的带有跳跃的莱维过程,导致最接近的共同祖先的谱系显示出特别强烈的证据反对单速率 BM。

相似文献

1
Phylogenetic analysis using Lévy processes: finding jumps in the evolution of continuous traits.
Syst Biol. 2013 Mar;62(2):193-204. doi: 10.1093/sysbio/sys086. Epub 2012 Oct 3.
2
Fast likelihood calculation for multivariate Gaussian phylogenetic models with shifts.
Theor Popul Biol. 2020 Feb;131:66-78. doi: 10.1016/j.tpb.2019.11.005. Epub 2019 Dec 2.
3
The Cauchy Process on Phylogenies: A Tractable Model for Pulsed Evolution.
Syst Biol. 2023 Dec 30;72(6):1296-1315. doi: 10.1093/sysbio/syad053.
5
Automatic generation of evolutionary hypotheses using mixed Gaussian phylogenetic models.
Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16921-16926. doi: 10.1073/pnas.1813823116. Epub 2019 Aug 2.
6
A Relaxed Directional Random Walk Model for Phylogenetic Trait Evolution.
Syst Biol. 2017 May 1;66(3):299-319. doi: 10.1093/sysbio/syw093.
7
Inference of Evolutionary Jumps in Large Phylogenies using Lévy Processes.
Syst Biol. 2017 Nov 1;66(6):950-963. doi: 10.1093/sysbio/syx028.
8
Inferring Bounded Evolution in Phenotypic Characters from Phylogenetic Comparative Data.
Syst Biol. 2016 Jul;65(4):651-61. doi: 10.1093/sysbio/syw015. Epub 2016 Feb 10.
9
When can we reconstruct the ancestral state? Beyond Brownian motion.
J Math Biol. 2023 May 4;86(6):88. doi: 10.1007/s00285-023-01922-8.
10
Use of Continuous Traits Can Improve Morphological Phylogenetics.
Syst Biol. 2018 Mar 1;67(2):328-339. doi: 10.1093/sysbio/syx072.

引用本文的文献

1
Discriminating models of trait evolution.
bioRxiv. 2025 Jun 13:2025.06.12.659377. doi: 10.1101/2025.06.12.659377.
3
Unifying approaches from statistical genetics and phylogenetics for mapping phenotypes in structured populations.
PLoS Biol. 2024 Oct 9;22(10):e3002847. doi: 10.1371/journal.pbio.3002847. eCollection 2024 Oct.
4
Relationship between dominance hierarchy steepness and rank-relatedness of benefits in primates.
Behav Ecol. 2024 Aug 13;35(5):arae066. doi: 10.1093/beheco/arae066. eCollection 2024 Sep-Oct.
5
Identification of the mode of evolution in incomplete carbonate successions.
BMC Ecol Evol. 2024 Aug 23;24(1):113. doi: 10.1186/s12862-024-02287-2.
7
Exploring the Macroevolutionary Signature of Asymmetric Inheritance at Speciation.
Syst Biol. 2025 Apr 1;74(2):267-281. doi: 10.1093/sysbio/syae043.
8
Fast Bayesian Inference of Phylogenies from Multiple Continuous Characters.
Syst Biol. 2024 May 27;73(1):102-124. doi: 10.1093/sysbio/syad067.
9
Robust Phylogenetic Regression.
Syst Biol. 2024 May 27;73(1):140-157. doi: 10.1093/sysbio/syad070.
10
Scientific novelty beyond the experiment.
Microb Biotechnol. 2023 Jun;16(6):1131-1173. doi: 10.1111/1751-7915.14222. Epub 2023 Feb 14.

本文引用的文献

2
NATURAL SELECTION AND RANDOM GENETIC DRIFT IN PHENOTYPIC EVOLUTION.
Evolution. 1976 Jun;30(2):314-334. doi: 10.1111/j.1558-5646.1976.tb00911.x.
3
Is your phylogeny informative? Measuring the power of comparative methods.
Evolution. 2012 Jul;66(7):2240-51. doi: 10.1111/j.1558-5646.2011.01574.x. Epub 2012 Feb 19.
4
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.
Syst Biol. 2012 May;61(3):539-42. doi: 10.1093/sysbio/sys029. Epub 2012 Feb 22.
5
A novel comparative method for identifying shifts in the rate of character evolution on trees.
Evolution. 2011 Dec;65(12):3578-89. doi: 10.1111/j.1558-5646.2011.01401.x. Epub 2011 Aug 24.
6
The evolution of gene expression levels in mammalian organs.
Nature. 2011 Oct 19;478(7369):343-8. doi: 10.1038/nature10532.
7
The million-year wait for macroevolutionary bursts.
Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):15908-13. doi: 10.1073/pnas.1014503108. Epub 2011 Aug 23.
8
Bayesian random local clocks, or one rate to rule them all.
BMC Biol. 2010 Aug 31;8:114. doi: 10.1186/1741-7007-8-114.
9
Evolutionary distinctiveness, threat status, and ecological oddity in primates.
Conserv Biol. 2010 Aug;24(4):1052-8. doi: 10.1111/j.1523-1739.2010.01532.x. Epub 2010 Jun 16.
10
Early bursts of body size and shape evolution are rare in comparative data.
Evolution. 2010 Aug;64(8):2385-96. doi: 10.1111/j.1558-5646.2010.01025.x. Epub 2010 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验