Suppr超能文献

带有门控循环单元的神经网络可减少因传感器位置变化导致的血糖预测误差。

Neural Networks With Gated Recurrent Units Reduce Glucose Forecasting Error Due to Changes in Sensor Location.

作者信息

Tucker Aaron P, Erdman Arthur G, Schreiner Pamela J, Ma Sisi, Chow Lisa S

机构信息

Earl E. Bakken Medical Devices Center, University of Minnesota, Minneapolis, MN, USA.

Division of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN, USA.

出版信息

J Diabetes Sci Technol. 2024 Jan;18(1):124-134. doi: 10.1177/19322968221100839. Epub 2022 Jun 4.

Abstract

BACKGROUND

Continuous glucose monitors (CGMs) have become important tools for providing estimates of glucose to patients with diabetes. Recently, neural networks (NNs) have become a common method for forecasting glucose values using data from CGMs. One method of forecasting glucose values is a time-delay feedforward (FF) NN, but a change in the CGM location on a participant can increase forecast error in a FF NN.

METHODS

In response, we examined a NN with gated recurrent units (GRUs) as a method of reducing forecast error due to changes in sensor location.

RESULTS

We observed that for 13 participants with type 2 diabetes wearing blinded CGMs on both arms for 12 weeks (FreeStyle Libre Pro-Abbott), GRU NNs did not produce significantly different errors in glucose prediction due to sensor location changes ( < .05).

CONCLUSION

We observe that GRU NNs can mitigate error in glucose prediction due to differences in CGM location.

摘要

背景

连续血糖监测仪(CGM)已成为向糖尿病患者提供血糖估计值的重要工具。最近,神经网络(NN)已成为一种使用CGM数据预测血糖值的常用方法。预测血糖值的一种方法是时延前馈(FF)神经网络,但参与者身上CGM位置的变化会增加FF神经网络中的预测误差。

方法

作为回应,我们研究了一种带有门控循环单元(GRU)的神经网络,作为减少因传感器位置变化而导致的预测误差的一种方法。

结果

我们观察到,对于13名2型糖尿病患者,他们双臂佩戴盲法CGM长达12周(FreeStyle Libre Pro-雅培),GRU神经网络并未因传感器位置变化而在血糖预测中产生显著不同的误差(<.05)。

结论

我们观察到GRU神经网络可以减轻因CGM位置差异而导致的血糖预测误差。

相似文献

2
Examining Sensor Agreement in Neural Network Blood Glucose Prediction.检查神经网络血糖预测中的传感器一致性。
J Diabetes Sci Technol. 2022 Nov;16(6):1473-1482. doi: 10.1177/19322968211018246. Epub 2021 Jun 10.
8
Reliability of Inpatient CGM: Comparison to Standard of Care.住院患者连续血糖监测的可靠性:与常规护理的比较。
J Diabetes Sci Technol. 2023 Mar;17(2):329-335. doi: 10.1177/19322968211062168. Epub 2021 Dec 15.

本文引用的文献

1
Examining Sensor Agreement in Neural Network Blood Glucose Prediction.检查神经网络血糖预测中的传感器一致性。
J Diabetes Sci Technol. 2022 Nov;16(6):1473-1482. doi: 10.1177/19322968211018246. Epub 2021 Jun 10.
2
GluNet: A Deep Learning Framework for Accurate Glucose Forecasting.GluNet:用于精确血糖预测的深度学习框架。
IEEE J Biomed Health Inform. 2020 Feb;24(2):414-423. doi: 10.1109/JBHI.2019.2931842. Epub 2019 Jul 29.
3
Differences in Glucose Levels Between Left and Right Arm.左右臂之间葡萄糖水平的差异。
J Diabetes Sci Technol. 2019 Jul;13(4):794-795. doi: 10.1177/1932296819851123. Epub 2019 May 21.
5
Convolutional Recurrent Neural Networks for Glucose Prediction.卷积循环神经网络在血糖预测中的应用。
IEEE J Biomed Health Inform. 2020 Feb;24(2):603-613. doi: 10.1109/JBHI.2019.2908488. Epub 2019 Apr 1.
8
Continuous glucose monitoring: A review of the technology and clinical use.持续葡萄糖监测:技术与临床应用综述
Diabetes Res Clin Pract. 2017 Nov;133:178-192. doi: 10.1016/j.diabres.2017.08.005. Epub 2017 Sep 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验