Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School , Piscataway, New Jersey 08854-5635, USA.
J Med Chem. 2012 Nov 26;55(22):10160-76. doi: 10.1021/jm3012728. Epub 2012 Oct 26.
The prevalence of multidrug resistance among clinically significant bacterial pathogens underscores a critical need for the development of new classes of antibiotics with novel mechanisms of action. Here we describe the synthesis and evaluation of a guanidinomethyl biaryl compound {1-((4'-(tert-butyl)-[1,1'-biphenyl]-3-yl)methyl)guanidine} that targets the bacterial cell division protein FtsZ. In vitro studies with various bacterial FtsZ proteins reveal that the compound alters the dynamics of FtsZ self-polymerization via a stimulatory mechanism, while minimally impacting the polymerization of tubulin, the closest mammalian homologue of FtsZ. The FtsZ binding site of the compound is identified through a combination of computational and mutational approaches. The compound exhibits a broad spectrum of bactericidal activity, including activity against the multidrug-resistant pathogens methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE), while also exhibiting a minimal potential to induce resistance. Taken together, our results highlight the compound as a promising new FtsZ-targeting bactericidal agent.
临床上重要的细菌病原体中出现的多药耐药性突显出迫切需要开发具有新型作用机制的新型抗生素。在这里,我们描述了一种胍基联芳基化合物{1-((4'-(叔丁基)-[1,1'-联苯]-3-基)甲基)胍}的合成和评估,该化合物针对细菌细胞分裂蛋白 FtsZ。与各种细菌 FtsZ 蛋白的体外研究表明,该化合物通过刺激机制改变 FtsZ 自我聚合的动力学,而对 FtsZ 的聚合影响最小,FtsZ 是与 FtsZ 最接近的哺乳动物同源物。通过计算和突变方法的组合确定了该化合物的 FtsZ 结合位点。该化合物具有广泛的杀菌活性,包括对耐甲氧西林金黄色葡萄球菌(MRSA)和耐万古霉素肠球菌(VRE)等多药耐药病原体的活性,同时也具有最小的诱导耐药性的潜力。总之,我们的研究结果突出了该化合物作为一种有前途的新型 FtsZ 靶向杀菌剂。