Wang Ming-Wei, Hang Kaini, Han Wei, Li Xin, Zhou Qingtong, Yang Dehua
Research Center for Deepsea Bioresources, Sanya 572025, China.
Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
Acta Pharm Sin B. 2025 Aug;15(8):3978-3996. doi: 10.1016/j.apsb.2025.06.008. Epub 2025 Jun 11.
Filamenting temperature-sensitive mutant Z (FtsZ), a protein essential for bacterial cell division, is highly conserved across bacterial species but absent in humans, positioning it as a strategic target for the development of antibiotics. Significant efforts to identify FtsZ inhibitors- biochemical assays (, GTPase activity) and cellular approaches (, immunofluorescence)-have yielded over 100 natural products and synthetic compounds, whose cheminformatics clustering underscores a limited chemical diversity among the current scaffolds. Structural studies, including X-ray crystallography and cryo-electron microscopy, have resolved 97 FtsZ structures revealing conserved polymerization mechanisms and conformational plasticity, as exemplified by extremophile adaptations (, from the high-pressure environment of the Mariana Trench's Challenger Deep). However, clinical translation is hindered by weak binding affinities, inhibitory inefficacy, dynamic conformational flexibility, and evolving drug resistance linked to FtsZ's functional plasticity. To address these challenges, future efforts should be directed to resolve transient assembly intermediates, leveraging machine learning with high-throughput screening, and integrating structural biology with pharmacokinetic optimization. Multidisciplinary strategies combining these approaches hold promise for translating FtsZ-focused research into clinically viable therapies, addressing the critical unmet need posed by antibiotics resistance.
丝状温度敏感突变体Z(FtsZ)是细菌细胞分裂所必需的一种蛋白质,在细菌物种中高度保守,但在人类中不存在,这使其成为抗生素开发的一个战略靶点。为鉴定FtsZ抑制剂所做的大量努力——包括生化分析(如GTPase活性)和细胞方法(如免疫荧光)——已产生了100多种天然产物和合成化合物,其化学信息学聚类凸显了当前支架之间有限的化学多样性。包括X射线晶体学和冷冻电子显微镜在内的结构研究已解析出97种FtsZ结构,揭示了保守的聚合机制和构象可塑性,例如极端微生物的适应性(如来自马里亚纳海沟挑战者深渊高压环境的)。然而,临床转化受到弱结合亲和力、抑制无效、动态构象灵活性以及与FtsZ功能可塑性相关的不断演变的耐药性的阻碍。为应对这些挑战,未来的努力应致力于解析瞬时组装中间体,利用机器学习与高通量筛选,并将结构生物学与药代动力学优化相结合。结合这些方法的多学科策略有望将以FtsZ为重点的研究转化为临床上可行的疗法,满足抗生素耐药性带来的关键未满足需求。