Suppr超能文献

一种全面的遗传方法,用于提高人类皮肤癌风险预测的准确性。

A comprehensive genetic approach for improving prediction of skin cancer risk in humans.

机构信息

Section on Statistical Genetics, Department of Biostatistics, University of Alabama, Birmingham, AL 35294, USA.

出版信息

Genetics. 2012 Dec;192(4):1493-502. doi: 10.1534/genetics.112.141705. Epub 2012 Oct 10.

Abstract

Prediction of genetic risk for disease is needed for preventive and personalized medicine. Genome-wide association studies have found unprecedented numbers of variants associated with complex human traits and diseases. However, these variants explain only a small proportion of genetic risk. Mounting evidence suggests that many traits, relevant to public health, are affected by large numbers of small-effect genes and that prediction of genetic risk to those traits and diseases could be improved by incorporating large numbers of markers into whole-genome prediction (WGP) models. We developed a WGP model incorporating thousands of markers for prediction of skin cancer risk in humans. We also considered other ways of incorporating genetic information into prediction models, such as family history or ancestry (using principal components, PCs, of informative markers). Prediction accuracy was evaluated using the area under the receiver operating characteristic curve (AUC) estimated in a cross-validation. Incorporation of genetic information (i.e., familial relationships, PCs, or WGP) yielded a significant increase in prediction accuracy: from an AUC of 0.53 for a baseline model that accounted for nongenetic covariates to AUCs of 0.58 (pedigree), 0.62 (PCs), and 0.64 (WGP). In summary, prediction of skin cancer risk could be improved by considering genetic information and using a large number of single-nucleotide polymorphisms (SNPs) in a WGP model, which allows for the detection of patterns of genetic risk that are above and beyond those that can be captured using family history. We discuss avenues for improving prediction accuracy and speculate on the possible use of WGP to prospectively identify individuals at high risk.

摘要

疾病遗传风险预测对于预防医学和个性化医学至关重要。全基因组关联研究发现了前所未有的与复杂人类特征和疾病相关的变异。然而,这些变异仅能解释一小部分遗传风险。越来越多的证据表明,许多与公共健康相关的特征受大量小效应基因的影响,通过将大量标记物纳入全基因组预测 (WGP) 模型,可以提高对这些特征和疾病的遗传风险预测。我们开发了一种纳入数千个标记物的 WGP 模型,用于预测人类皮肤癌风险。我们还考虑了将遗传信息纳入预测模型的其他方法,例如家族史或祖先(使用有信息标记物的主成分,PC)。使用交叉验证估计的接收者操作特征曲线下的面积 (AUC) 评估预测准确性。通过纳入遗传信息(即家族关系、PC 或 WGP),预测准确性显著提高:从考虑非遗传协变量的基线模型的 AUC 为 0.53 提高到 AUC 为 0.58(系谱)、0.62(PC)和 0.64(WGP)。总之,通过考虑遗传信息并在 WGP 模型中使用大量单核苷酸多态性 (SNP),可以提高皮肤癌风险预测的准确性,从而检测到超出家族史所能捕捉到的遗传风险模式。我们讨论了提高预测准确性的途径,并推测 WGP 可能用于前瞻性地识别高风险个体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd5c/3512154/b1fcd30eecff/1493fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验