Suppr超能文献

美国荷斯坦牛中单核苷酸多态性亚组及其亲本平均值的预测能力。

Predictive ability of subsets of single nucleotide polymorphisms with and without parent average in US Holsteins.

机构信息

Department of Dairy Science, University of Wisconsin, Madison 53706, USA.

出版信息

J Dairy Sci. 2010 Dec;93(12):5942-9. doi: 10.3168/jds.2010-3335.

Abstract

Genome-enabled prediction of breeding values using high-density panels (HDP) can be highly accurate, even for young sires. However, the cost of the assay may limit its use to elite animals only. Low-density panels (LDP) containing a subset of single nucleotide polymorphisms (SNP) may give reasonably accurate predictions and could be used cost-effectively with young males and females. This study evaluates strategies for selecting subsets of SNP for several traits, compares predictive ability of LDP with that of HDP, and assesses the benefits of including parent average (PA) as a predictor in models using LDP. Data consisting of progeny-test predicted transmitting ability (PTA) for net merit and 6 other traits of economic interest from 4,783 Holstein sires were evaluated using testing and training sets with regressions on their high-density genotypes and parent averages for net merit index. Additionally, SNP subsets of different sizes were selected using different strategies, including the "best" SNP based on the absolute values of their estimated effects from HDP models for either the trait itself or lifetime net merit, and evenly spaced (ES) SNP across the genome. Overall, HDP models had the best predictive ability, setting an upper bound for the predictive ability of LDP sets. Low-density panels targeting the SNP with strongest effects (for either a single trait or lifetime net merit) provided reasonably accurate predictions and generally outperformed predictions based on evenly spaced SNP. For example, evenly spaced sets would require at least 5,000 to 7,500 SNP to reach 95% of the predictive ability provided by HDP. On the other hand, this level of predictive ability can be achieved with sets of 2,000 SNP when SNP are selected based on magnitude of estimated effects for the trait. Accuracy of predictions based on LDP can be improved markedly by including parent average as a fixed effect in the model; for example, a set with the 1,000 best SNP using the parent average achieved the 95% of the accuracy of a HDP model.

摘要

基于高密度基因芯片(HDP)的全基因组预测可以非常准确,即使对于年轻的种公牛也是如此。然而,由于检测成本高昂,这种方法可能仅局限于优秀的种畜。包含单核苷酸多态性(SNP)子集的低密度基因芯片(LDP)可以给出相当准确的预测结果,并且可以经济有效地用于年轻的公母牛。本研究评估了几种性状的 SNP 子集选择策略,比较了 LDP 和 HDP 的预测能力,并评估了在使用 LDP 的模型中包含系谱均值(PA)作为预测因子的益处。利用来自 4783 头荷斯坦公牛的后代测定的净效益和其他 6 个经济性状的传递力(PTA)预测值数据,通过对高密度基因型和系谱均值的回归,对测试和训练集进行了评估。此外,还使用不同的策略选择了不同大小的 SNP 子集,包括基于 HDP 模型中 SNP 效应绝对值的“最佳” SNP(针对性状本身或终生净效益)和基因组上均匀间隔(ES) SNP。总体而言,HDP 模型具有最佳的预测能力,为 LDP 模型的预测能力设定了上限。针对单个性状或终生净效益效应最强的 SNP 的 LDP 可以提供相当准确的预测结果,并且通常优于基于均匀间隔 SNP 的预测结果。例如,均匀间隔 SNP 集需要至少 5000 到 7500 个 SNP 才能达到 HDP 提供的 95%的预测能力。另一方面,当根据性状的估计效应大小选择 SNP 时,可以使用 2000 个 SNP 集达到这种预测水平。通过将系谱均值作为固定效应纳入模型,可以显著提高基于 LDP 的预测准确性;例如,使用 1000 个最佳 SNP 的 LDP 集可以达到 HDP 模型的 95%的准确性。

相似文献

引用本文的文献

本文引用的文献

3
Genomic selection using low-density marker panels.使用低密度标记面板的基因组选择。
Genetics. 2009 May;182(1):343-53. doi: 10.1534/genetics.108.100289. Epub 2009 Mar 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验